login
A208621
Number of Young tableaux with 8 n-length rows, increasing entries down the columns and monotonic entries along the rows (first row increasing).
1
1, 1, 6435, 28440320, 1523926182363, 232075055225078521, 67887185669916054862201, 32104063492616280061833179530, 22081439406257212482754663652213531, 20535540740510211632088991774438342144131, 24486820402563168156475227361324722817780058649
OFFSET
0,3
COMMENTS
Also the number of (8*n-1)-step walks on n-dimensional cubic lattice from (1,0,...,0) to (8,8,...,8) with positive unit steps in all dimensions such that for each point (p_1,p_2,...,p_n) we have p_1<=p_2<=...<=p_n or p_1>=p_2>=...>=p_n.
CROSSREFS
Row n=8 of A208615.
Sequence in context: A222344 A194720 A140916 * A294855 A025040 A236092
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Feb 29 2012
STATUS
approved