login
A208624
Number of Young tableaux with n 4-length rows, increasing entries down the columns and monotonic entries along the rows (first row increasing).
2
1, 1, 15, 491, 25187, 1725819, 144558247, 14029729645, 1523926182363, 180929760551225, 23086562828397479, 3126799551978895629, 445266632168280620515, 66178991463387525289801, 10206120232877820185701707, 1625518539321873371313790283
OFFSET
0,3
COMMENTS
Also the number of (4*n-1)-step walks on 4-dimensional cubic lattice from (1,0,0,0) to (n,n,n,n) with positive unit steps in all dimensions such that for each point (p_1,p_2,p_3,p_4) we have p_1<=p_2<=p_3<=p_4 or p_1>=p_2>=p_3>=p_4.
LINKS
FORMULA
a(n) ~ c * 256^n / n^(15/2), where c = 1.536590923866647845196812662963243246... . - Vaclav Kotesovec, Sep 03 2014
CROSSREFS
Column k=4 of A208615.
Sequence in context: A252929 A218198 A377045 * A013433 A013435 A151816
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Feb 29 2012
STATUS
approved