login
A208628
Number of Young tableaux with n 8-length rows, increasing entries down the columns and monotonic entries along the rows (first row increasing).
1
1, 1, 1431, 23374495, 1489926719139, 231474950997766763, 67868136936393109678363, 32103240681864904236146331299, 22081439406257212482754663652213531, 20535579472799243918667089350306950940643, 24486860959943276912563736137263132718929372619
OFFSET
0,3
COMMENTS
Also the number of (8*n-1)-step walks on 8-dimensional cubic lattice from (1,0,...,0) to (n,n,...,n) with positive unit steps in all dimensions such that for each point (p_1,p_2,...,p_8) we have p_1<=p_2<=...<=p_8 or p_1>=p_2>=...>=p_8.
CROSSREFS
Column k=8 of A208615.
Sequence in context: A321977 A147695 A151996 * A205070 A169822 A114083
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Feb 29 2012
STATUS
approved