login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208021
T(n,k) = Number of n X k nonnegative integer arrays with new values 0 upwards introduced in row major order and no element equal to any horizontal, vertical, diagonal or antidiagonal neighbor (colorings ignoring permutations of colors).
7
1, 1, 1, 2, 1, 2, 5, 7, 7, 5, 15, 87, 270, 87, 15, 52, 1657, 27093, 27093, 1657, 52, 203, 43833, 5252041, 30066912, 5252041, 43833, 203, 877, 1515903, 1688298227, 80318704605, 80318704605, 1688298227, 1515903, 877, 4140, 65766991
OFFSET
1,4
COMMENTS
Equivalently, the number of colorings of the n x k king graph using any number of colors up to permutation of the colors. - Andrew Howroyd, Jun 25 2017
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..231 (terms 1..49 from R. H. Hardin)
Eric Weisstein's World of Mathematics, King Graph
EXAMPLE
Table starts
...1........1............2...............5...............15..............52
...1........1............7..............87.............1657...........43833
...2........7..........270...........27093..........5252041......1688298227
...5.......87........27093........30066912......80318704605.421673189900658
..15.....1657......5252041.....80318704605.3662498214110836
..52....43833...1688298227.421673189900658
.203..1515903.819147302097
.877.65766991
...
Some solutions for n=4 k=3
..0..1..2....0..1..0....0..1..0....0..1..0....0..1..0....0..1..0....0..1..2
..2..3..4....2..3..2....2..3..2....2..3..2....2..3..2....2..3..2....2..3..0
..5..6..0....4..0..4....0..1..0....4..1..0....0..1..0....0..4..0....4..5..4
..2..3..1....1..2..1....2..3..4....5..2..3....2..4..2....1..2..1....0..1..2
CROSSREFS
Columns 1-5 are A000110(n-1), A020556(n-1), A208018, A208019, A208020.
Main diagonal is A289136.
Sequence in context: A296666 A120898 A153910 * A052532 A006702 A129394
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 22 2012
STATUS
approved