login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A207453
T(n,k) = Number of n X k 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 0 1 vertically.
11
2, 4, 4, 6, 16, 6, 10, 36, 36, 8, 16, 100, 90, 64, 10, 26, 256, 330, 168, 100, 12, 42, 676, 1008, 760, 270, 144, 14, 68, 1764, 3354, 2560, 1450, 396, 196, 16, 110, 4624, 10710, 10088, 5200, 2460, 546, 256, 18, 178, 12100, 34884, 36456, 23530, 9216, 3850, 720
OFFSET
1,1
COMMENTS
Table starts
..2...4...6...10....16.....26.....42......68......110......178.......288
..4..16..36..100...256....676...1764....4624....12100....31684.....82944
..6..36..90..330..1008...3354..10710...34884...112530...364722...1179360
..8..64.168..760..2560..10088..36456..138176...509960..1910296...7096320
.10.100.270.1450..5200..23530..92610..396100..1610950..6754210..27799200
.12.144.396.2460..9216..46956.196812..932688..4086060.18819228..83939328
.14.196.546.3850.14896..84266.370734.1922564..8935850.44655394.212625504
.16.256.720.5680.22528.139984.640080.3599104.17556880.94358512.474439680
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*n;
k=2: a(n) = 4*n^2;
k=3: a(n) = 12*n^2 - 6*n;
k=4: a(n) = 10*n^3 + 10*n^2 - 10*n;
k=5: a(n) = 48*n^3 - 32*n^2;
k=6: a(n) = 26*n^4 + 78*n^3 - 104*n^2 + 26*n;
k=7: a(n) = 168*n^4 - 84*n^3 - 84*n^2 + 42*n;
k=8: a(n) = 68*n^5 + 408*n^4 - 612*n^3 + 204*n^2;
k=9: a(n) = 550*n^5 - 990*n^3 + 660*n^2 - 110*n;
k=10: a(n) = 178*n^6 + 1780*n^5 - 2670*n^4 + 534*n^3 + 534*n^2 - 178*n;
k=11: a(n) = 1728*n^6 + 1440*n^5 - 6912*n^4 + 5184*n^3 - 1152*n^2;
k=12: a(n) = 466*n^7 + 6990*n^6 - 9320*n^5 - 2796*n^4 + 8388*n^3 - 3728*n^2 + 466*n;
k=13: a(n) = 5278*n^7 + 10556*n^6 - 36946*n^5 + 27144*n^4 - 3016*n^3 - 3016*n^2 + 754*n;
k=14: a(n) = 1220*n^8 + 25620*n^7 - 25620*n^6 - 42700*n^5 + 73200*n^4 - 36600*n^3 + 6100*n^2;
k=15: a(n) = 15792*n^8 + 55272*n^7 - 165816*n^6 + 98700*n^5 + 39480*n^4 - 59220*n^3 + 19740*n^2 - 1974*n.
Empirical for row n:
n=1: a(k)=a(k-1)+a(k-2);
n=2: a(k)=2*a(k-1)+2*a(k-2)-a(k-3);
n=3: a(k)=a(k-1)+7*a(k-2)+2*a(k-3)-4*a(k-4);
n=4: a(k)=a(k-1)+10*a(k-2)+3*a(k-3)-9*a(k-4);
n=5: a(k)=a(k-1)+13*a(k-2)+4*a(k-3)-16*a(k-4);
n=6: a(k)=a(k-1)+16*a(k-2)+5*a(k-3)-25*a(k-4);
n=7: a(k)=a(k-1)+19*a(k-2)+6*a(k-3)-36*a(k-4);
apparently for row n>2: a(k)=a(k-1)+(3*n-2)*a(k-2)+(n-1)*a(k-3)+(n-1)^2*a(k-4).
EXAMPLE
Some solutions for n=5, k=3
..1..0..1....1..1..0....1..1..1....0..1..1....0..1..0....0..1..0....0..1..1
..1..0..1....1..0..0....0..1..1....0..1..1....0..1..1....1..0..0....1..0..1
..1..0..1....1..0..0....0..1..0....0..1..0....0..1..1....1..0..0....1..0..1
..1..0..1....1..0..0....0..1..0....0..1..0....0..1..0....1..0..0....1..0..1
..1..0..0....1..0..0....0..1..0....0..1..0....0..1..0....1..0..0....1..0..1
CROSSREFS
Column 2 is A016742.
Column 3 is A152746.
Row 1 is A006355(n+2).
Row 2 is A206981.
Sequence in context: A207928 A207858 A208379 * A208287 A208501 A207589
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 17 2012
STATUS
approved