Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Oct 14 2023 11:47:10
%S 2,4,4,6,16,6,10,36,36,8,16,100,90,64,10,26,256,330,168,100,12,42,676,
%T 1008,760,270,144,14,68,1764,3354,2560,1450,396,196,16,110,4624,10710,
%U 10088,5200,2460,546,256,18,178,12100,34884,36456,23530,9216,3850,720
%N T(n,k) = Number of n X k 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 0 1 vertically.
%C Table starts
%C ..2...4...6...10....16.....26.....42......68......110......178.......288
%C ..4..16..36..100...256....676...1764....4624....12100....31684.....82944
%C ..6..36..90..330..1008...3354..10710...34884...112530...364722...1179360
%C ..8..64.168..760..2560..10088..36456..138176...509960..1910296...7096320
%C .10.100.270.1450..5200..23530..92610..396100..1610950..6754210..27799200
%C .12.144.396.2460..9216..46956.196812..932688..4086060.18819228..83939328
%C .14.196.546.3850.14896..84266.370734.1922564..8935850.44655394.212625504
%C .16.256.720.5680.22528.139984.640080.3599104.17556880.94358512.474439680
%H R. H. Hardin, <a href="/A207453/b207453.txt">Table of n, a(n) for n = 1..1573</a>
%F Empirical for column k:
%F k=1: a(n) = 2*n;
%F k=2: a(n) = 4*n^2;
%F k=3: a(n) = 12*n^2 - 6*n;
%F k=4: a(n) = 10*n^3 + 10*n^2 - 10*n;
%F k=5: a(n) = 48*n^3 - 32*n^2;
%F k=6: a(n) = 26*n^4 + 78*n^3 - 104*n^2 + 26*n;
%F k=7: a(n) = 168*n^4 - 84*n^3 - 84*n^2 + 42*n;
%F k=8: a(n) = 68*n^5 + 408*n^4 - 612*n^3 + 204*n^2;
%F k=9: a(n) = 550*n^5 - 990*n^3 + 660*n^2 - 110*n;
%F k=10: a(n) = 178*n^6 + 1780*n^5 - 2670*n^4 + 534*n^3 + 534*n^2 - 178*n;
%F k=11: a(n) = 1728*n^6 + 1440*n^5 - 6912*n^4 + 5184*n^3 - 1152*n^2;
%F k=12: a(n) = 466*n^7 + 6990*n^6 - 9320*n^5 - 2796*n^4 + 8388*n^3 - 3728*n^2 + 466*n;
%F k=13: a(n) = 5278*n^7 + 10556*n^6 - 36946*n^5 + 27144*n^4 - 3016*n^3 - 3016*n^2 + 754*n;
%F k=14: a(n) = 1220*n^8 + 25620*n^7 - 25620*n^6 - 42700*n^5 + 73200*n^4 - 36600*n^3 + 6100*n^2;
%F k=15: a(n) = 15792*n^8 + 55272*n^7 - 165816*n^6 + 98700*n^5 + 39480*n^4 - 59220*n^3 + 19740*n^2 - 1974*n.
%F Empirical for row n:
%F n=1: a(k)=a(k-1)+a(k-2);
%F n=2: a(k)=2*a(k-1)+2*a(k-2)-a(k-3);
%F n=3: a(k)=a(k-1)+7*a(k-2)+2*a(k-3)-4*a(k-4);
%F n=4: a(k)=a(k-1)+10*a(k-2)+3*a(k-3)-9*a(k-4);
%F n=5: a(k)=a(k-1)+13*a(k-2)+4*a(k-3)-16*a(k-4);
%F n=6: a(k)=a(k-1)+16*a(k-2)+5*a(k-3)-25*a(k-4);
%F n=7: a(k)=a(k-1)+19*a(k-2)+6*a(k-3)-36*a(k-4);
%F apparently for row n>2: a(k)=a(k-1)+(3*n-2)*a(k-2)+(n-1)*a(k-3)+(n-1)^2*a(k-4).
%e Some solutions for n=5, k=3
%e ..1..0..1....1..1..0....1..1..1....0..1..1....0..1..0....0..1..0....0..1..1
%e ..1..0..1....1..0..0....0..1..1....0..1..1....0..1..1....1..0..0....1..0..1
%e ..1..0..1....1..0..0....0..1..0....0..1..0....0..1..1....1..0..0....1..0..1
%e ..1..0..1....1..0..0....0..1..0....0..1..0....0..1..0....1..0..0....1..0..1
%e ..1..0..0....1..0..0....0..1..0....0..1..0....0..1..0....1..0..0....1..0..1
%Y Column 2 is A016742.
%Y Column 3 is A152746.
%Y Row 1 is A006355(n+2).
%Y Row 2 is A206981.
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Feb 17 2012