login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A207191
Numbers that match even polynomials among the monic polynomials over {-1,0,1}, ordered as at A206821.
3
1, 4, 5, 8, 26, 27, 30, 31, 42, 45, 46, 120, 121, 124, 125, 136, 137, 140, 141, 184, 187, 188, 199, 200, 203, 204, 502, 503, 506, 507, 518, 519, 522, 523, 566, 567, 570, 571, 582, 583, 586, 587, 758, 761, 762, 773, 774, 777, 778, 821, 822, 825, 826
OFFSET
1,2
COMMENTS
The polynomials y(k,x) range through all monic polynomials with coefficients in {-1,0,1}, ordered as at A206821.
EXAMPLE
The first 13 polynomials:
1 .... 1
2 .... x
3 .... x + 1
4 .... x^2
5 .... x^2 - 1
6 .... x^2 - x
7 .... x^2 - x - 1
8 .... x^2 + 1
9 .... x^2 + x
10 ... x^2 + x + 1
11 ... x^3
12 ... x^3 - 1
13 ... x^3 - x
Numbers n for which y(n,-x)=y(n,x): 1,4,5,8,26,...
Numbers n for which y(n,-x)=-y(n,x): 2,11,13,20,...
MATHEMATICA
t = Table[IntegerDigits[n, 2], {n, 1, 2000}];
b[n_] := Reverse[Table[x^k, {k, 0, n}]]
p[n_] := p[n] = t[[n]].b[-1 + Length[t[[n]]]]
TableForm[Table[{n, p[n], Factor[p[n]]}, {n, 1, 6}]]
f[k_] := 2^k - k; g[k_] := 2^k - 2 + f[k - 1];
q1[n_] := p[2^(k - 1)] - p[n + 1 - f[k]]
q2[n_] := p[n - f[k] + 2]
y1 = Table[p[n], {n, 1, 4}];
Do[AppendTo[y1,
Join[Table[q1[n], {n, f[k], g[k] - 1}],
Table[q2[n], {n, g[k], f[k + 1] - 1}]]], {k, 3, 10}]
y = Flatten[y1]; (* polynomials over {-1, 0, 1} *)
Flatten[Position[y - (y /. x -> -x), 0]] (* A207191 *)
Flatten[Position[y + (y /. x -> -x), 0]] (* A207192 *)
CROSSREFS
Cf. A206821.
Sequence in context: A104884 A226795 A113726 * A240790 A229861 A140315
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 16 2012
STATUS
approved