login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A207192
Numbers that match odd polynomials among the monic polynomials over {-1,0,1}, ordered as at A206821.
3
2, 11, 13, 20, 57, 59, 65, 67, 90, 96, 98, 247, 249, 255, 257, 279, 281, 287, 289, 376, 382, 384, 406, 408, 414, 416, 1013, 1015, 1021, 1023, 1045, 1047, 1053, 1055, 1141, 1143, 1149, 1151, 1173, 1175, 1181, 1183, 1526, 1532, 1534, 1556, 1558
OFFSET
1,1
COMMENTS
The polynomials y(k,x) range through all monic polynomials with coefficients in {-1,0,1}, ordered as at A206821.
EXAMPLE
The first 13 polynomials:
1 .... 1
2 .... x
3 .... x + 1
4 .... x^2
5 .... x^2 - 1
6 .... x^2 - x
7 .... x^2 - x - 1
8 .... x^2 + 1
9 .... x^2 + x
10 ... x^2 + x + 1
11 ... x^3
12 ... x^3 - 1
13 ... x^3 - x
Numbers n for which y(n,-x)=y(n,x): 1,4,5,8,26,...
Numbers n for which y(n,-x)=-y(n,x): 2,11,13,20,...
MATHEMATICA
t = Table[IntegerDigits[n, 2], {n, 1, 2000}];
b[n_] := Reverse[Table[x^k, {k, 0, n}]]
p[n_] := p[n] = t[[n]].b[-1 + Length[t[[n]]]]
TableForm[Table[{n, p[n], Factor[p[n]]}, {n, 1, 6}]]
f[k_] := 2^k - k; g[k_] := 2^k - 2 + f[k - 1];
q1[n_] := p[2^(k - 1)] - p[n + 1 - f[k]]
q2[n_] := p[n - f[k] + 2]
y1 = Table[p[n], {n, 1, 4}];
Do[AppendTo[y1,
Join[Table[q1[n], {n, f[k], g[k] - 1}],
Table[q2[n], {n, g[k], f[k + 1] - 1}]]], {k, 3, 10}]
y = Flatten[y1]; (* polynomials over {-1, 0, 1} *)
Flatten[Position[y - (y /. x -> -x), 0]] (* A207191 *)
Flatten[Position[y + (y /. x -> -x), 0]] (* A207192 *)
CROSSREFS
Cf. A206821.
Sequence in context: A167412 A166561 A179462 * A240097 A018375 A274408
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 16 2012
STATUS
approved