login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A207188
Numbers matching polynomials y(k,x) that have x as a factor; see Comments.
5
2, 4, 6, 9, 11, 13, 15, 17, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128
OFFSET
1,1
COMMENTS
The polynomials y(k,x) range through all monic polynomials with coefficients in {-1,0,1}, ordered as at A206821.
EXAMPLE
The first 13 polynomials:
1 .... 1
2 .... x
3 .... x + 1
4 .... x^2
5 .... x^2 - 1
6 .... x^2 - x
7 .... x^2 - x - 1
8 .... x^2 + 1
9 .... x^2 + x
10 ... x^2 + x + 1
11 ... x^3
12 ... x^3 - 1
13 ... x^3 - x
The list exemplifies these sequences:
A207187 (multiples of x + 1): 3,5,9,13,...
A207188 (multiples of x): 2,4,6,9,11,13,...
A207189 (multiples of x - 1): 5,6,12,13,...
A207190 (multiples of x^2 + 1): 8,20,25,27,...
MATHEMATICA
t = Table[IntegerDigits[n, 2], {n, 1, 2000}];
b[n_] := Reverse[Table[x^k, {k, 0, n}]]
p[n_] := p[n] = t[[n]].b[-1 + Length[t[[n]]]]
TableForm[Table[{n, p[n], Factor[p[n]]}, {n, 1, 6}]]
f[k_] := 2^k - k; g[k_] := 2^k - 2 + f[k - 1];
q1[n_] := p[2^(k - 1)] - p[n + 1 - f[k]]
q2[n_] := p[n - f[k] + 2]
y1 = Table[p[n], {n, 1, 4}];
Do[AppendTo[y1,
Join[Table[q1[n], {n, f[k], g[k] - 1}],
Table[q2[n], {n, g[k], f[k + 1] - 1}]]], {k, 3, 10}]
y = Flatten[y1]; (* polynomials over {-1, 0, 1} *)
TableForm[Table[{n, y[[n]], Factor[y[[n]]]}, {n, 1, 10}]]
Table[y[[n]] /. x -> -1, {n, 1, 300}];
Flatten[Position[%, 0]] (* A207187 *)
Table[y[[n]] /. x -> 0, {n, 1, 300}] ;
Flatten[Position[%, 0]] (* A207188 *)
Table[y[[n]] /. x -> 1, {n, 1, 1200}] ;
Flatten[Position[%, 0]] (* A207189 *)
Table[y[[n]] /. x -> I, {n, 1, 600}] ;
Flatten[Position[%, 0]] (* A207190 *)
CROSSREFS
Cf. A206821.
Sequence in context: A285593 A351631 A248898 * A085148 A252169 A187842
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 16 2012
STATUS
approved