Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Mar 30 2012 18:58:12
%S 2,4,6,9,11,13,15,17,20,22,24,26,28,30,32,34,36,38,40,43,45,47,49,51,
%T 53,55,57,59,61,63,65,67,69,71,73,75,77,79,81,83,85,87,90,92,94,96,98,
%U 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128
%N Numbers matching polynomials y(k,x) that have x as a factor; see Comments.
%C The polynomials y(k,x) range through all monic polynomials with coefficients in {-1,0,1}, ordered as at A206821.
%e The first 13 polynomials:
%e 1 .... 1
%e 2 .... x
%e 3 .... x + 1
%e 4 .... x^2
%e 5 .... x^2 - 1
%e 6 .... x^2 - x
%e 7 .... x^2 - x - 1
%e 8 .... x^2 + 1
%e 9 .... x^2 + x
%e 10 ... x^2 + x + 1
%e 11 ... x^3
%e 12 ... x^3 - 1
%e 13 ... x^3 - x
%e The list exemplifies these sequences:
%e A207187 (multiples of x + 1): 3,5,9,13,...
%e A207188 (multiples of x): 2,4,6,9,11,13,...
%e A207189 (multiples of x - 1): 5,6,12,13,...
%e A207190 (multiples of x^2 + 1): 8,20,25,27,...
%t t = Table[IntegerDigits[n, 2], {n, 1, 2000}];
%t b[n_] := Reverse[Table[x^k, {k, 0, n}]]
%t p[n_] := p[n] = t[[n]].b[-1 + Length[t[[n]]]]
%t TableForm[Table[{n, p[n], Factor[p[n]]}, {n, 1, 6}]]
%t f[k_] := 2^k - k; g[k_] := 2^k - 2 + f[k - 1];
%t q1[n_] := p[2^(k - 1)] - p[n + 1 - f[k]]
%t q2[n_] := p[n - f[k] + 2]
%t y1 = Table[p[n], {n, 1, 4}];
%t Do[AppendTo[y1,
%t Join[Table[q1[n], {n, f[k], g[k] - 1}],
%t Table[q2[n], {n, g[k], f[k + 1] - 1}]]], {k, 3, 10}]
%t y = Flatten[y1]; (* polynomials over {-1,0,1} *)
%t TableForm[Table[{n, y[[n]], Factor[y[[n]]]}, {n, 1, 10}]]
%t Table[y[[n]] /. x -> -1, {n, 1, 300}];
%t Flatten[Position[%, 0]] (* A207187 *)
%t Table[y[[n]] /. x -> 0, {n, 1, 300}] ;
%t Flatten[Position[%, 0]] (* A207188 *)
%t Table[y[[n]] /. x -> 1, {n, 1, 1200}] ;
%t Flatten[Position[%, 0]] (* A207189 *)
%t Table[y[[n]] /. x -> I, {n, 1, 600}] ;
%t Flatten[Position[%, 0]] (* A207190 *)
%Y Cf. A206821.
%K nonn
%O 1,1
%A _Clark Kimberling_, Feb 16 2012