login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206719
Number of distinct irreducible factors of the polynomial p(n,x) defined at A206073.
3
0, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 3, 1, 2, 3, 2, 1, 2, 2, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 3, 1, 2, 3, 1, 2, 1, 3, 1, 3, 1, 2, 3, 2, 1, 3, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 1, 4, 1, 2, 2, 2, 2, 2, 1, 3, 2
OFFSET
1,6
COMMENTS
The polynomials having coefficients in {0,1} are enumerated as in A206074 (and A206073).
LINKS
EXAMPLE
p(1,n) = 1, so a(1)=0
p(2,n) = x, so a(2)=1
p(6,n) = x(1+x), so a(6)=2
p(18,n) = x(x+1)(1-x+x^2), so a(18)=3
p(90,n) = x(1+x)(1+x^2)(1-x+x^2), so a(90)=4
MATHEMATICA
t = Table[IntegerDigits[n, 2], {n, 1, 1000}];
b[n_] := Reverse[Table[x^k, {k, 0, n}]]
p[n_, x_] := p[n, x] = t[[n]].b[-1 + Length[t[[n]]]]
TableForm[Table[{n, p[n, x],
FactorList[p[n, x]], -1 + Length[FactorList[p[n, x]]]}, {n, 1, 9}]]
Table[Length[FactorList[p[n, x]]], {n, 1, 120}]
PROG
(PARI) A206719(n) = { my(f = factor(Pol(binary(n)))); (#f~); }; \\ Antti Karttunen, Dec 16 2017
CROSSREFS
Cf. also A091221, A206442.
Sequence in context: A325169 A322862 A325225 * A240086 A322306 A359778
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 11 2012
STATUS
approved