login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of distinct irreducible factors of the polynomial p(n,x) defined at A206073.
3

%I #12 Dec 18 2017 11:56:43

%S 0,1,1,1,1,2,1,1,2,2,1,2,1,2,2,1,1,3,1,2,2,2,1,2,1,2,2,2,1,3,1,1,2,2,

%T 2,3,1,2,2,2,1,3,1,2,3,2,1,2,2,2,2,2,1,3,1,2,2,2,1,3,1,2,3,1,2,3,1,2,

%U 1,3,1,3,1,2,3,2,1,3,1,2,1,2,1,3,2,2,1,2,1,4,1,2,2,2,2,2,1,3,2

%N Number of distinct irreducible factors of the polynomial p(n,x) defined at A206073.

%C The polynomials having coefficients in {0,1} are enumerated as in A206074 (and A206073).

%H Antti Karttunen, <a href="/A206719/b206719.txt">Table of n, a(n) for n = 1..65537</a>

%e p(1,n) = 1, so a(1)=0

%e p(2,n) = x, so a(2)=1

%e p(6,n) = x(1+x), so a(6)=2

%e p(18,n) = x(x+1)(1-x+x^2), so a(18)=3

%e p(90,n) = x(1+x)(1+x^2)(1-x+x^2), so a(90)=4

%t t = Table[IntegerDigits[n, 2], {n, 1, 1000}];

%t b[n_] := Reverse[Table[x^k, {k, 0, n}]]

%t p[n_, x_] := p[n, x] = t[[n]].b[-1 + Length[t[[n]]]]

%t TableForm[Table[{n, p[n, x],

%t FactorList[p[n, x]], -1 + Length[FactorList[p[n, x]]]}, {n, 1, 9}]]

%t Table[Length[FactorList[p[n, x]]], {n, 1, 120}]

%o (PARI) A206719(n) = { my(f = factor(Pol(binary(n)))); (#f~); }; \\ _Antti Karttunen_, Dec 16 2017

%Y Cf. A206073, A206074, A257000.

%Y Cf. also A091221, A206442.

%K nonn

%O 1,6

%A _Clark Kimberling_, Feb 11 2012