login
A206329
Squarefree sums of 2 successive primes.
4
5, 30, 42, 78, 138, 186, 210, 222, 258, 330, 390, 410, 434, 462, 618, 762, 786, 798, 906, 930, 946, 966, 978, 1002, 1030, 1230, 1290, 1334, 1374, 1410, 1446, 1482, 1518, 1542, 1606, 1722, 1758, 1770, 1794, 1830, 1866, 1878, 1938, 1974, 2006, 2022, 2190, 2226
OFFSET
1,1
COMMENTS
Intersection of A001043 and A005117, both infinite, but is their intersection infinite?
Also note that the only prime is a(1)=5 and there are no semiprimes (products of 2 primes A001358).
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
a(1)=5=A001043(1)=A005117(4), a(2)=30=A001043(6)=A005117(19), a(3)=42=A001043(8)=A005117(28).
MAPLE
N:= 1000: # to get the first N terms
count:= 0:
p:= 2:
while count < N do
pp:= nextprime(p);
if numtheory:-issqrfree(p+pp) then
count:= count+1;
A[count]:= p+pp;
fi;
p:= pp;
od:
seq(A[i], i=1..N);
# Robert Israel, Jul 20 2014
MATHEMATICA
Select[Table[Prime[n] + Prime[n + 1], {n, 300}], SquareFreeQ] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2012 *)
PROG
(PARI) p=2; forprime(q=3, 1e4, if(issquarefree(p+q), print1(p+q", ")); p=q) \\ Charles R Greathouse IV, Feb 08 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Feb 06 2012
STATUS
approved