This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A206282 a(n) = ( a(n-1) * a(n-3) + a(n-2) ) / a(n-4), a(1) = a(2) = 1, a(3) = -1, a(4) = -4. 1
 1, 1, -1, -4, -5, 1, 9, 11, -4, -25, -31, 9, 64, 79, -25, -169, -209, 64, 441, 545, -169, -1156, -1429, 441, 3025, 3739, -1156, -7921, -9791, 3025, 20736, 25631, -7921, -54289, -67105, 20736, 142129, 175681, -54289, -372100, -459941, 142129, 974169, 1204139 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS This satisfies the same recurrence as Dana Scott's sequence A048736. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..5000 Index entries for linear recurrences with constant coefficients, signature (0,0,-2,0,0,2,0,0,1). FORMULA G.f.: x * (1 + x - x^2 - 2*x^3 - 3*x^4 - x^5 - x^6 - x^7) / (1 + 2*x^3 - 2*x^6 - x^9). a(n) = a(-5 - n) = a(n+2) * a(n-2) - a(n+1) * a(n-1) for all n in Z. a(3*n) = (-1)^n * F(n)^2, a(3*n + 1) = (-1)^n * F(n + 2)^2 where F = Fibonacci A000045. a(6*n - 4) = - A110034(2*n), a(6*n - 1) = - A110035(2*n), a(3*n + 2) = (-1)^n * A126116(2*n + 3). EXAMPLE G.f. = x + x^2 - x^3 - 4*x^4 - 5*x^5 + x^6 + 9*x^7 + 11*x^8 - 4*x^9 - 25*x^10 + ... MATHEMATICA CoefficientList[Series[x*(1+x)*(1-x^2)*(1+x^3)/(1-2*x^2-2*x^4-2*x^6+x^8 ), {x, 0, 50}], x] (* or *) RecurrenceTable[{a[n] == ( a[n-1]*a[n-3] + a[n-2] )/a[n-4], a[1] == a[2] == 1, a[3] == -1, a[4] == -4}, a, {n, 1, 50}] (* G. C. Greubel, Aug 12 2018 *) PROG (PARI) {a(n) = my(k = n\3); (-1)^k * if( n%3 == 0, fibonacci( k )^2, n%3 == 1, fibonacci( k+2 )^2, fibonacci( k ) * fibonacci( k+3 ) + fibonacci( k+1 ) * fibonacci( k+2 ))}; (PARI) x='x+O('x^30); Vec(x*(1+x)*(1-x^2)*(1+x^3)/(1-2*x^2-2*x^4 -2*x^6 +x^8 )) \\ G. C. Greubel, Aug 12 2018 (Haskell) a206282 n = a206282_list !! (n-1) a206282_list = 1 : 1 : -1 : -4 :    zipWith div      (zipWith (+)        (zipWith (*) (drop 3 a206282_list)                     (drop 1 a206282_list))        (drop 2 a206282_list))      a206282_list -- Same program as in A048736, see comment. -- Reinhard Zumkeller, Feb 08 2012 (MAGMA) I:=[1, 1, -1, -4]; [n le 4 select I[n] else (Self(n-1)*Self(n-3) + Self(n-2))/Self(n-4): n in [1..30]]; // G. C. Greubel, Aug 12 2018 CROSSREFS Cf. A000045, A048736, A110034, A110035, A126116. Sequence in context: A178233 A271356 A201411 * A082051 A196848 A266699 Adjacent sequences:  A206279 A206280 A206281 * A206283 A206284 A206285 KEYWORD sign,easy AUTHOR Michael Somos, Feb 05 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 19:24 EDT 2019. Contains 328127 sequences. (Running on oeis4.)