login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = ( a(n-1) * a(n-3) + a(n-2) ) / a(n-4), a(1) = a(2) = 1, a(3) = -1, a(4) = -4.
1

%I #30 Mar 15 2024 12:49:08

%S 1,1,-1,-4,-5,1,9,11,-4,-25,-31,9,64,79,-25,-169,-209,64,441,545,-169,

%T -1156,-1429,441,3025,3739,-1156,-7921,-9791,3025,20736,25631,-7921,

%U -54289,-67105,20736,142129,175681,-54289,-372100,-459941,142129,974169,1204139

%N a(n) = ( a(n-1) * a(n-3) + a(n-2) ) / a(n-4), a(1) = a(2) = 1, a(3) = -1, a(4) = -4.

%C This satisfies the same recurrence as Dana Scott's sequence A048736.

%H Reinhard Zumkeller, <a href="/A206282/b206282.txt">Table of n, a(n) for n = 1..5000</a>

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,-2,0,0,2,0,0,1).

%F G.f.: x * (1 + x - x^2 - 2*x^3 - 3*x^4 - x^5 - x^6 - x^7) / (1 + 2*x^3 - 2*x^6 - x^9).

%F a(n) = a(-5 - n) = a(n+2) * a(n-2) - a(n+1) * a(n-1) for all n in Z.

%F a(3*n) = (-1)^n * F(n)^2, a(3*n + 1) = (-1)^n * F(n + 2)^2 where F = Fibonacci A000045.

%F a(6*n - 4) = - A110034(2*n), a(6*n - 1) = - A110035(2*n), a(3*n + 2) = (-1)^n * A126116(2*n + 3).

%e G.f. = x + x^2 - x^3 - 4*x^4 - 5*x^5 + x^6 + 9*x^7 + 11*x^8 - 4*x^9 - 25*x^10 + ...

%t CoefficientList[Series[x*(1+x)*(1-x^2)*(1+x^3)/(1-2*x^2-2*x^4-2*x^6+x^8 ), {x,0,50}], x] (* or *) RecurrenceTable[{a[n] == ( a[n-1]*a[n-3] + a[n-2] )/a[n-4], a[1] == a[2] == 1, a[3] == -1, a[4] == -4}, a, {n,1,50}] (* _G. C. Greubel_, Aug 12 2018 *)

%o (PARI) {a(n) = my(k = n\3); (-1)^k * if( n%3 == 0, fibonacci( k )^2, n%3 == 1, fibonacci( k+2 )^2, fibonacci( k ) * fibonacci( k+3 ) + fibonacci( k+1 ) * fibonacci( k+2 ))};

%o (PARI) x='x+O('x^30); Vec(x*(1+x)*(1-x^2)*(1+x^3)/(1-2*x^2-2*x^4 -2*x^6 +x^8 )) \\ _G. C. Greubel_, Aug 12 2018

%o (Haskell)

%o a206282 n = a206282_list !! (n-1)

%o a206282_list = 1 : 1 : -1 : -4 :

%o zipWith div

%o (zipWith (+)

%o (zipWith (*) (drop 3 a206282_list)

%o (drop 1 a206282_list))

%o (drop 2 a206282_list))

%o a206282_list

%o -- Same program as in A048736, see comment.

%o -- _Reinhard Zumkeller_, Feb 08 2012

%o (Magma) I:=[1,1,-1,-4]; [n le 4 select I[n] else (Self(n-1)*Self(n-3) + Self(n-2))/Self(n-4): n in [1..30]]; // _G. C. Greubel_, Aug 12 2018

%Y Cf. A000045, A048736, A110034, A110035, A126116.

%K sign,easy

%O 1,4

%A _Michael Somos_, Feb 05 2012