login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A201411 Decimal expansion of greatest x satisfying 4*x^2=sec(x) and 0<x<pi. 3
1, 4, 5, 1, 9, 2, 5, 7, 2, 2, 1, 2, 3, 2, 8, 7, 9, 9, 9, 4, 4, 6, 9, 4, 6, 6, 0, 4, 5, 0, 2, 0, 7, 9, 9, 6, 0, 0, 5, 4, 5, 0, 6, 4, 1, 0, 6, 1, 4, 3, 6, 1, 9, 1, 2, 0, 5, 3, 3, 0, 6, 1, 2, 7, 8, 5, 7, 2, 2, 2, 0, 7, 9, 9, 5, 1, 2, 9, 4, 9, 6, 7, 4, 4, 9, 9, 2, 8, 2, 5, 4, 6, 1, 0, 4, 5, 6, 3, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

See A201397 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

least:  0.53986108391277844363067373273228071480624...

greatest: 1.451925722123287999446946604502079960054...

MATHEMATICA

a = 4; c = 0;

f[x_] := a*x^2 + c; g[x_] := Sec[x]

Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]

RealDigits[r]    (* A201410 *)

r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]

RealDigits[r]    (* A201411 *)

CROSSREFS

Cf. A201397.

Sequence in context: A199384 A178233 A271356 * A206282 A082051 A196848

Adjacent sequences:  A201408 A201409 A201410 * A201412 A201413 A201414

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Dec 01 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 16:25 EDT 2019. Contains 328302 sequences. (Running on oeis4.)