login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A201411
Decimal expansion of greatest x satisfying 4*x^2 = sec(x) and 0 < x < Pi.
3
1, 4, 5, 1, 9, 2, 5, 7, 2, 2, 1, 2, 3, 2, 8, 7, 9, 9, 9, 4, 4, 6, 9, 4, 6, 6, 0, 4, 5, 0, 2, 0, 7, 9, 9, 6, 0, 0, 5, 4, 5, 0, 6, 4, 1, 0, 6, 1, 4, 3, 6, 1, 9, 1, 2, 0, 5, 3, 3, 0, 6, 1, 2, 7, 8, 5, 7, 2, 2, 2, 0, 7, 9, 9, 5, 1, 2, 9, 4, 9, 6, 7, 4, 4, 9, 9, 2, 8, 2, 5, 4, 6, 1, 0, 4, 5, 6, 3, 0
OFFSET
1,2
COMMENTS
See A201397 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least: 0.53986108391277844363067373273228071480624...
greatest: 1.451925722123287999446946604502079960054...
MATHEMATICA
a = 4; c = 0;
f[x_] := a*x^2 + c; g[x_] := Sec[x]
Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]
RealDigits[r] (* A201410 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
RealDigits[r] (* A201411 *)
CROSSREFS
Cf. A201397.
Sequence in context: A199384 A178233 A271356 * A353313 A206282 A378347
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 01 2011
STATUS
approved