login
A201408
Decimal expansion of least x satisfying 3*x^2 = sec(x) and 0 < x < Pi.
3
6, 4, 6, 1, 3, 7, 4, 5, 4, 0, 6, 2, 8, 9, 7, 2, 9, 7, 2, 9, 0, 1, 6, 7, 9, 1, 5, 9, 1, 0, 1, 1, 2, 5, 2, 2, 6, 9, 5, 2, 8, 5, 9, 6, 3, 3, 4, 5, 9, 2, 3, 2, 0, 0, 9, 7, 0, 9, 4, 5, 7, 1, 1, 4, 2, 5, 7, 7, 6, 9, 1, 3, 5, 1, 6, 4, 1, 3, 0, 4, 9, 6, 1, 4, 6, 0, 3, 0, 6, 0, 9, 0, 3, 4, 7, 3, 2, 1, 7
OFFSET
0,1
COMMENTS
See A201397 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least: 0.6461374540628972972901679159101125226952859...
greatest: 1.39986411944606406722963950518361037394178...
MATHEMATICA
a = 3; c = 0;
f[x_] := a*x^2 + c; g[x_] := Sec[x]
Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .6, .7}, WorkingPrecision -> 110]
RealDigits[r] (* A201408 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.3, 1.4}, WorkingPrecision -> 110]
RealDigits[r] (* A201409 *)
CROSSREFS
Cf. A201397.
Sequence in context: A317866 A309977 A349700 * A153606 A086057 A254307
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 01 2011
STATUS
approved