%I #8 Apr 10 2021 08:06:05
%S 6,4,6,1,3,7,4,5,4,0,6,2,8,9,7,2,9,7,2,9,0,1,6,7,9,1,5,9,1,0,1,1,2,5,
%T 2,2,6,9,5,2,8,5,9,6,3,3,4,5,9,2,3,2,0,0,9,7,0,9,4,5,7,1,1,4,2,5,7,7,
%U 6,9,1,3,5,1,6,4,1,3,0,4,9,6,1,4,6,0,3,0,6,0,9,0,3,4,7,3,2,1,7
%N Decimal expansion of least x satisfying 3*x^2 = sec(x) and 0 < x < Pi.
%C See A201397 for a guide to related sequences. The Mathematica program includes a graph.
%e least: 0.6461374540628972972901679159101125226952859...
%e greatest: 1.39986411944606406722963950518361037394178...
%t a = 3; c = 0;
%t f[x_] := a*x^2 + c; g[x_] := Sec[x]
%t Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
%t r = x /. FindRoot[f[x] == g[x], {x, .6, .7}, WorkingPrecision -> 110]
%t RealDigits[r] (* A201408 *)
%t r = x /. FindRoot[f[x] == g[x], {x, 1.3, 1.4}, WorkingPrecision -> 110]
%t RealDigits[r] (* A201409 *)
%Y Cf. A201397.
%K nonn,cons
%O 0,1
%A _Clark Kimberling_, Dec 01 2011