The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A204592 Primes p such that (p+1)/2, (p+2)/3, (p+3)/4 and (p+4)/5 are also prime. 3
 19441, 266401, 423481, 539401, 600601, 663601, 908041, 1113961, 1338241, 1483561, 1657441, 1673401, 2578801, 3109681, 3150841, 3336601, 3613681, 4112761, 4160641, 4798081, 5114881, 5412961, 5516281, 5590201, 5839681, 6078361, 7660801, 8628481, 9362641, 9388801, 9584401, 9733081 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Equivalently, primes p in A163573 such that p+4 is a semiprime. (Since all p in A163573 are of the form p=120k+1, p+4 is necessarily a multiple of 5. The other prime factor is then (p+4)/5 = 24k+1.) LINKS Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 FORMULA A204592 = A163573 intersect A136061. MATHEMATICA Select[Prime[Range[700000]], AllTrue[{(#+1)/2, (#+2)/3, (#+3)/4, (#+4)/5}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 05 2017 *) PROG (PARI) {my(p=1); until(, isprime(p+=120) || next; for( j=2, 5, isprime(p\j+1) || next(2)); print1(p", "))} (PARI) forprime(p=2, 1e7, if(p%120==1&&isprime((p+1)/2)&&isprime((p+2)/3)&& isprime((p+3)/4)&&isprime((p+4)/5), print1(p", "))) \\ Charles R Greathouse IV, Feb 26 2012 CROSSREFS Sequence in context: A126721 A323558 A321642 * A140930 A254486 A254493 Adjacent sequences: A204589 A204590 A204591 * A204593 A204594 A204595 KEYWORD nonn AUTHOR M. F. Hasler, Feb 26 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 31 18:24 EST 2023. Contains 359980 sequences. (Running on oeis4.)