login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204592
Primes p such that (p+1)/2, (p+2)/3, (p+3)/4 and (p+4)/5 are also prime.
3
19441, 266401, 423481, 539401, 600601, 663601, 908041, 1113961, 1338241, 1483561, 1657441, 1673401, 2578801, 3109681, 3150841, 3336601, 3613681, 4112761, 4160641, 4798081, 5114881, 5412961, 5516281, 5590201, 5839681, 6078361, 7660801, 8628481, 9362641, 9388801, 9584401, 9733081
OFFSET
1,1
COMMENTS
Equivalently, primes p in A163573 such that p+4 is a semiprime. (Since all p in A163573 are of the form p=120k+1, p+4 is necessarily a multiple of 5. The other prime factor is then (p+4)/5 = 24k+1.)
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
A204592 = A163573 intersect A136061.
MATHEMATICA
Select[Prime[Range[700000]], AllTrue[{(#+1)/2, (#+2)/3, (#+3)/4, (#+4)/5}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 05 2017 *)
PROG
(PARI) {my(p=1); until(, isprime(p+=120) || next; for( j=2, 5, isprime(p\j+1) || next(2)); print1(p", "))}
(PARI) forprime(p=2, 1e7, if(p%120==1&&isprime((p+1)/2)&&isprime((p+2)/3)&& isprime((p+3)/4)&&isprime((p+4)/5), print1(p", "))) \\ Charles R Greathouse IV, Feb 26 2012
CROSSREFS
Sequence in context: A126721 A323558 A321642 * A140930 A254486 A254493
KEYWORD
nonn
AUTHOR
M. F. Hasler, Feb 26 2012
STATUS
approved