login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204562
Symmetric matrix: f(i,j) = floor((2i+2j+6)/4)-floor((i+j+3)/4), by (constant) antidiagonals.
3
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5
OFFSET
1,2
COMMENTS
For n>=2, the number of occurrences of n is 16n-18. For a guide to related sequences and permanents, see A204551.
EXAMPLE
Northwest corner:
1 2 2 2 2 3 3 3 3
2 2 2 2 3 3 3 3 4
2 2 2 3 3 3 3 4 4
2 3 3 3 3 4 4 4 4
3 3 3 3 4 4 4 4 5
3 3 3 4 4 4 4 5 5
3 3 4 4 4 4 5 5 5
MATHEMATICA
f[i_, j_] :=
Floor[(2 i + 2 j + 6)/4] - Floor[(i + j + 3)/4];
m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
TableForm[m[8]] (* 8x8 principal submatrix *)
Flatten[Table[f[i, n + 1 - i],
{n, 1, 14}, {i, 1, n}]] (* A204562 *)
Permanent[m_] :=
With[{a = Array[x, Length[m]]},
Coefficient[Times @@ (m.a), Times @@ a]];
Table[Permanent[m[n]], {n, 1, 17}] (* A204563 *)
CROSSREFS
Sequence in context: A107609 A243113 A258198 * A135660 A163858 A236362
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Jan 16 2012
STATUS
approved