login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243113
Minimum of the cube root of the largest element over all partitions of n into at most 5 cubes.
2
0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 5, 3, 3, 3, 3, 3, 3, 4, 4, 5, 4, 3, 3, 3, 4, 4, 4, 4, 5, 4, 3, 4, 4, 3, 4, 4, 4, 4, 5
OFFSET
0,7
COMMENTS
It is known that every number can be written as the sum of at most 5 (positive or negative) cubes.
"Minimum of the cube root of the largest absolute element over all partitions of n into at most 5 cubes" gives a different sequence with differences at n=302, 509, 517, 518, 521, 581, 733, 860, 1076, 1228, 1642, 1733, 1741, 1885, 2012, ... . - Alois P. Heinz, Aug 26 2014
LINKS
EXAMPLE
For n=5, a(n)=1. The partition of 5 into 1^3 + 1^3 + 1^3 + 1^3 + 1^3 has largest summand 1^3, while any other such partition, take 2^3 -1^3 -1^3 -1^3 for example, will have a larger largest part.
a(302) = 7: 7^3 +7^3 +4^3 +4^3 -8^3 = 302.
MAPLE
b:= proc(n, i, t) option remember; n=0 or (0<=i or n<=i^3)
and t>0 and (b(n, i-1, t) or b(n-i^3, i, t-1))
end:
a:= proc(n) local k; for k from 0
do if b(n, k, 5) then return k fi od
end:
seq(a(n), n=0..120); # Alois P. Heinz, Aug 20 2014
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = n==0 || (0 <= i || n <= i^3) && t>0 && (b[n, i-1, t] || b[n-i^3, i, t-1]); a[n_] := For[k=0, True, k++, If[b[n, k, 5], Return[k]]]; Table[a[n], {n, 0, 120}] (* Jean-François Alcover, Feb 17 2017, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A156822 A130635 A107609 * A258198 A204562 A135660
KEYWORD
nonn
AUTHOR
David S. Newman, Aug 20 2014
EXTENSIONS
More terms from Alois P. Heinz, Aug 20 2014
STATUS
approved