login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A204165
Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of floor[(i+j)/2], as in A204164.
3
1, -1, 1, -3, 1, -1, -2, 6, -1, 0, 4, 4, -10, 1, 0, 0, -15, -4, 15, -1, 0, 0, 0, 36, 3, -21, 1, 0, 0, 0, 0, -84, 4, 28, -1, 0, 0, 0, 0, 0, 160, -16, -36, 1, 0, 0, 0, 0, 0, 0, -300, 40, 45, -1, 0, 0, 0, 0, 0, 0, 0, 500, -75, -55, 1, 0, 0, 0, 0, 0, 0, 0, 0, -825, 130
OFFSET
1,4
COMMENTS
Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences.
REFERENCES
(For references regarding interlacing roots, see A202605.)
EXAMPLE
Top of the array:
1....-1
1....-3.....1
-1....-2.....6....-1
0.....4.....4....-10...1
MATHEMATICA
f[i_, j_] := Floor[(i + j)/2];
m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
TableForm[m[8]] (* 8x8 principal submatrix *)
Flatten[Table[f[i, n + 1 - i],
{n, 1, 15}, {i, 1, n}]] (* A204164 *)
p[n_] := CharacteristicPolynomial[m[n], x];
c[n_] := CoefficientList[p[n], x]
TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
Table[c[n], {n, 1, 12}]
Flatten[%] (* A204165 *)
TableForm[Table[c[n], {n, 1, 10}]]
CROSSREFS
KEYWORD
tabl,sign
AUTHOR
Clark Kimberling, Jan 12 2012
STATUS
approved