Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #6 Jul 12 2012 00:39:59
%S 1,-1,1,-3,1,-1,-2,6,-1,0,4,4,-10,1,0,0,-15,-4,15,-1,0,0,0,36,3,-21,1,
%T 0,0,0,0,-84,4,28,-1,0,0,0,0,0,160,-16,-36,1,0,0,0,0,0,0,-300,40,45,
%U -1,0,0,0,0,0,0,0,500,-75,-55,1,0,0,0,0,0,0,0,0,-825,130
%N Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of floor[(i+j)/2], as in A204164.
%C Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences.
%D (For references regarding interlacing roots, see A202605.)
%e Top of the array:
%e 1....-1
%e 1....-3.....1
%e -1....-2.....6....-1
%e 0.....4.....4....-10...1
%t f[i_, j_] := Floor[(i + j)/2];
%t m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
%t TableForm[m[8]] (* 8x8 principal submatrix *)
%t Flatten[Table[f[i, n + 1 - i],
%t {n, 1, 15}, {i, 1, n}]] (* A204164 *)
%t p[n_] := CharacteristicPolynomial[m[n], x];
%t c[n_] := CoefficientList[p[n], x]
%t TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
%t Table[c[n], {n, 1, 12}]
%t Flatten[%] (* A204165 *)
%t TableForm[Table[c[n], {n, 1, 10}]]
%Y Cf. A204164, A202605, A204016.
%K tabl,sign
%O 1,4
%A _Clark Kimberling_, Jan 12 2012