login
A204166
Symmetric matrix based on f(i,j)=ceiling[(i+j)/2], by antidiagonals.
4
1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8
OFFSET
1,2
COMMENTS
A204166 represents the matrix M given by f(i,j)=ceiling[(i+j)/2] for i>=1 and j>=1. See A204167 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M.
EXAMPLE
Northwest corner:
1 2 2 3 3 4 4 5
2 2 3 3 4 4 5 5
2 3 3 4 4 5 5 6
3 3 4 4 5 5 6 6
MATHEMATICA
f[i_, j_] := Ceiling[(i + j)/2];
m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
TableForm[m[8]] (* 8x8 principal submatrix *)
Flatten[Table[f[i, n + 1 - i],
{n, 1, 15}, {i, 1, n}]] (* A204166 *)
p[n_] := CharacteristicPolynomial[m[n], x];
c[n_] := CoefficientList[p[n], x]
TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
Table[c[n], {n, 1, 12}]
Flatten[%] (* A204167 *)
TableForm[Table[c[n], {n, 1, 10}]]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Jan 12 2012
STATUS
approved