OFFSET
1,1
COMMENTS
Exponent of smallest prime divisor of n is greater than or equal to 3.
Both N and the largest proper divisor of N share the same prime factors with different exponents.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Donovan Johnson)
EXAMPLE
17496 is in the sequence because 17496=2^3*3^7 (Achilles number) and the largest proper divisor 8748=2^2*3^7 is also an Achilles number.
MATHEMATICA
(* First run the program for A052486 to define achillesQ *) Select[Range[50000], achillesQ[#] && achillesQ[Divisors[#][[-2]]] &] (* Alonso del Arte, Jan 05 2012 *)
PROG
(Python)
# uses program in A052486
from itertools import count, islice
from math import gcd
from sympy import factorint
def A203662_gen(): # generator of terms
def g(x):
(f:=factorint(x))[min(f)]-=1
return (x, f.values())
return map(lambda x:x[0], filter(lambda x:all(d>1 for d in x[1]) and gcd(*x[1])==1, map(g, (A052486(i) for i in count(1)))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Antonio Roldán, Jan 04 2012
STATUS
approved