login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A252305
T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row and diagonal sum equal to 0 1 3 6 or 7 and every 3X3 column and antidiagonal sum not equal to 0 1 3 6 or 7
16
864, 1126, 1048, 1675, 1031, 1303, 2670, 1370, 1168, 1763, 4349, 1992, 1677, 1516, 2587, 7138, 3171, 2287, 2151, 2350, 3681, 12027, 5056, 3902, 3032, 3669, 3476, 5496, 20001, 7625, 6103, 5230, 5117, 5416, 4905, 8599, 33175, 12412, 8650, 8130, 9368
OFFSET
1,1
COMMENTS
Table starts
...864..1126..1675..2670..4349...7138..12027..20001...33175...56339....94176
..1048..1031..1370..1992..3171...5056...7625..12412...19904...30526....49974
..1303..1168..1677..2287..3902...6103...8650..14935...23660...33855....58675
..1763..1516..2151..3032..5230...8130..11639..20350...31954...45815....80430
..2587..2350..3669..5117..9368..15444..22521..43870...72344..109721...229454
..3681..3476..5416..7489.14515..24076..34279..70643..120328..173799...386803
..5496..4905..7492.10626.20910..33862..48579.104334..172130..244167...588270
..8599..8198.13386.18971.42082..71636.109845.323902..561288..964169..3701102
.12992.12725.20379.28579.66739.117612.172039.548179.1058568.1616919..6650739
.19992.18474.28688.41037.98782.167798.240515.861326.1546722.2208135.10925806
LINKS
FORMULA
Empirical for column k:
k=1: [linear recurrence of order 60] for n>72
k=2: a(n) = 11*a(n-3) -42*a(n-6) +64*a(n-9) -32*a(n-12) for n>24
k=3: a(n) = 7*a(n-3) -14*a(n-6) +8*a(n-9) for n>18
k=4: a(n) = 7*a(n-3) -14*a(n-6) +8*a(n-9) for n>18
k=5: a(n) = 15*a(n-3) -70*a(n-6) +120*a(n-9) -64*a(n-12) for n>21
k=6: a(n) = 15*a(n-3) -70*a(n-6) +120*a(n-9) -64*a(n-12) for n>21
k=7: a(n) = 15*a(n-3) -70*a(n-6) +120*a(n-9) -64*a(n-12) for n>24
Empirical for row n:
n=2: a(n) = 11*a(n-3) -42*a(n-6) +64*a(n-9) -32*a(n-12) for n>21
n=3: a(n) = 7*a(n-3) -14*a(n-6) +8*a(n-9) for n>15
n=4: a(n) = 7*a(n-3) -14*a(n-6) +8*a(n-9) for n>15
n=5: a(n) = 15*a(n-3) -70*a(n-6) +120*a(n-9) -64*a(n-12) for n>21
n=6: a(n) = 15*a(n-3) -70*a(n-6) +120*a(n-9) -64*a(n-12) for n>21
n=7: a(n) = 15*a(n-3) -70*a(n-6) +120*a(n-9) -64*a(n-12) for n>19
EXAMPLE
Some solutions for n=4 k=4
..3..0..3..0..0..0....0..0..3..3..0..3....3..0..0..3..0..0....2..0..1..2..0..1
..2..1..3..2..1..3....2..1..0..2..1..0....0..1..2..0..1..2....3..3..0..3..3..0
..0..1..2..3..1..2....0..1..2..0..1..2....1..3..2..1..3..2....0..2..1..0..2..1
..0..0..0..0..0..3....3..0..3..3..0..3....3..0..0..3..0..0....2..0..1..2..3..1
..2..1..3..2..1..0....2..1..0..2..1..3....0..1..2..0..1..0....3..3..0..0..0..3
..3..1..2..0..1..2....0..1..2..0..1..2....1..3..2..1..3..2....0..2..1..3..2..1
CROSSREFS
Sequence in context: A344287 A252297 A252298 * A252306 A184451 A203662
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 16 2014
STATUS
approved