login
A202334
Number of (n+1) X 8 binary arrays with consecutive windows of two bits considered as a binary number nondecreasing in every row and column.
1
100, 368, 1112, 2906, 6800, 14588, 29174, 55057, 98958, 170614, 283766, 457370, 717062, 1096910, 1641488, 2408309, 3470656, 4920852, 6874012, 9472322, 12889892, 17338232, 23072402, 30397889, 39678266, 51343690, 65900298, 83940562
OFFSET
1,1
COMMENTS
Column 7 of A202335.
LINKS
FORMULA
Empirical: a(n) = (1/20160)*n^8 + (1/420)*n^7 + (67/1440)*n^6 + (59/120)*n^5 + (8927/2880)*n^4 + (1439/120)*n^3 + (140383/5040)*n^2 + (1243/35)*n + 21.
Conjectures from Colin Barker, May 28 2018: (Start)
G.f.: x*(100 - 532*x + 1400*x^2 - 2254*x^3 + 2366*x^4 - 1636*x^5 + 722*x^6 - 185*x^7 + 21*x^8) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9.
(End)
EXAMPLE
Some solutions for n=5:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CROSSREFS
Cf. A202335.
Sequence in context: A349181 A138668 A017174 * A250806 A250853 A017270
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 17 2011
STATUS
approved