login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A250853 T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing min(x(i,j),x(i-1,j)) in the j direction 15
100, 400, 543, 1225, 2457, 2670, 3136, 8037, 13097, 12311, 7056, 21436, 44797, 63631, 54410, 14400, 49599, 123016, 223933, 291165, 233683, 27225, 103293, 290646, 626416, 1043885, 1280447, 983950, 48400, 198297, 614965, 1499679, 2955136 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Table starts
......100.......400.......1225.......3136........7056.......14400.......27225
......543......2457.......8037......21436.......49599......103293......198297
.....2670.....13097......44797.....123016......290646......614965.....1195457
....12311.....63631.....223933.....626416.....1499679.....3204951.....6279401
....54410....291165....1043885....2955136.....7134786....15344785....30214465
...233683...1280447....4648157...13263136....32201019....69543783...137379337
...983950...5480917...20067117...57570016...140301126...303858745...601566177
..4085631..23024631...84805533..244213216...596722599..1294875471..2567402601
.16796370..95448605..353060845.1019415136..2495502666..5422612945.10763029505
.68555723.391939087.1454214877.4206874336.10311967539.22429374423.44552408777
LINKS
FORMULA
Empirical T(n,k) = (((31/36)*k^6+(25/2)*k^5+(1229/18)*k^4+(620/3)*k^3+(10759/36)*k^2+(1181/6)*k+48)*4^n -((5/3)*k^6+(133/6)*k^5+(320/3)*k^4+(1717/6)*k^3+(944/3)*k^2+(344/3)*k)*3^n +(k^6+12*k^5+47*k^4+103*k^3+54*k^2-13*k)*2^n -((1/9)*k^6+(3/2)*k^5+(25/9)*k^4+(13/6)*k^3-(89/9)*k^2+(4/3)*k))/12
Empirical for column k:
k=1: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (832*4^n-846*3^n+204*2^n+2)/12
k=2: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (4838*4^n-6300*3^n+2214*2^n-80)/12
k=3: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (18104*4^n-26144*3^n+10680*2^n-644)/12
k=4: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (52650*4^n-80640*3^n+35820*2^n-2688)/12
k=5: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (129528*4^n-206190*3^n+96660*2^n-8190)/12
k=6: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (282492*4^n-462196*3^n+224994*2^n-20568)/12
k=7: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (562288*4^n-939120*3^n+470064*2^n-45220)/12
Empirical for row n:
n=1: a(n) = (1/36)*n^6 + (1/2)*n^5 + (133/36)*n^4 + (43/3)*n^3 + (277/9)*n^2 + (104/3)*n + 16
n=2: a(n) = (2/9)*n^6 + (47/12)*n^5 + (953/36)*n^4 + (1141/12)*n^3 + (6527/36)*n^2 + 172*n + 64
n=3: a(n) = (3/2)*n^6 + (74/3)*n^5 + (621/4)*n^4 + (3161/6)*n^3 + (3691/4)*n^2 + 783*n + 256
n=4: a(n) = (76/9)*n^6 + (1595/12)*n^5 + (28765/36)*n^4 + (31373/12)*n^3 + (155683/36)*n^2 + (10223/3)*n + 1024
n=5: a(n) = (763/18)*n^6 + (1949/3)*n^5 + (136493/36)*n^4 + (72691/6)*n^3 + (693923/36)*n^2 + (43319/3)*n + 4096
n=6: a(n) = 198*n^6 + (35807/12)*n^5 + (204911/12)*n^4 + (214827/4)*n^3 + (998209/12)*n^2 + (180451/3)*n + 16384
n=7: a(n) = (15887/18)*n^6 + (39464/3)*n^5 + (2674189/36)*n^4 + (462227/2)*n^3 + (12645859/36)*n^2 + (743119/3)*n + 65536
EXAMPLE
Some solutions for n=3 k=4
..2..2..0..0..0....1..2..3..2..2....2..2..1..0..0....3..2..1..1..1
..0..0..0..0..0....0..1..2..2..3....0..0..0..0..0....0..0..0..0..0
..1..1..1..1..1....0..1..2..2..3....1..1..1..1..3....0..0..1..1..2
..0..1..1..1..3....0..1..2..2..3....0..0..0..1..3....0..0..1..1..2
CROSSREFS
Row 1 is A001249(n+1)
Sequence in context: A017174 A202334 A250806 * A017270 A105089 A334707
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 28 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 9 20:08 EDT 2024. Contains 375765 sequences. (Running on oeis4.)