login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A250853
T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing min(x(i,j),x(i-1,j)) in the j direction
15
100, 400, 543, 1225, 2457, 2670, 3136, 8037, 13097, 12311, 7056, 21436, 44797, 63631, 54410, 14400, 49599, 123016, 223933, 291165, 233683, 27225, 103293, 290646, 626416, 1043885, 1280447, 983950, 48400, 198297, 614965, 1499679, 2955136
OFFSET
1,1
COMMENTS
Table starts
......100.......400.......1225.......3136........7056.......14400.......27225
......543......2457.......8037......21436.......49599......103293......198297
.....2670.....13097......44797.....123016......290646......614965.....1195457
....12311.....63631.....223933.....626416.....1499679.....3204951.....6279401
....54410....291165....1043885....2955136.....7134786....15344785....30214465
...233683...1280447....4648157...13263136....32201019....69543783...137379337
...983950...5480917...20067117...57570016...140301126...303858745...601566177
..4085631..23024631...84805533..244213216...596722599..1294875471..2567402601
.16796370..95448605..353060845.1019415136..2495502666..5422612945.10763029505
.68555723.391939087.1454214877.4206874336.10311967539.22429374423.44552408777
LINKS
FORMULA
Empirical T(n,k) = (((31/36)*k^6+(25/2)*k^5+(1229/18)*k^4+(620/3)*k^3+(10759/36)*k^2+(1181/6)*k+48)*4^n -((5/3)*k^6+(133/6)*k^5+(320/3)*k^4+(1717/6)*k^3+(944/3)*k^2+(344/3)*k)*3^n +(k^6+12*k^5+47*k^4+103*k^3+54*k^2-13*k)*2^n -((1/9)*k^6+(3/2)*k^5+(25/9)*k^4+(13/6)*k^3-(89/9)*k^2+(4/3)*k))/12
Empirical for column k:
k=1: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (832*4^n-846*3^n+204*2^n+2)/12
k=2: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (4838*4^n-6300*3^n+2214*2^n-80)/12
k=3: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (18104*4^n-26144*3^n+10680*2^n-644)/12
k=4: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (52650*4^n-80640*3^n+35820*2^n-2688)/12
k=5: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (129528*4^n-206190*3^n+96660*2^n-8190)/12
k=6: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (282492*4^n-462196*3^n+224994*2^n-20568)/12
k=7: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (562288*4^n-939120*3^n+470064*2^n-45220)/12
Empirical for row n:
n=1: a(n) = (1/36)*n^6 + (1/2)*n^5 + (133/36)*n^4 + (43/3)*n^3 + (277/9)*n^2 + (104/3)*n + 16
n=2: a(n) = (2/9)*n^6 + (47/12)*n^5 + (953/36)*n^4 + (1141/12)*n^3 + (6527/36)*n^2 + 172*n + 64
n=3: a(n) = (3/2)*n^6 + (74/3)*n^5 + (621/4)*n^4 + (3161/6)*n^3 + (3691/4)*n^2 + 783*n + 256
n=4: a(n) = (76/9)*n^6 + (1595/12)*n^5 + (28765/36)*n^4 + (31373/12)*n^3 + (155683/36)*n^2 + (10223/3)*n + 1024
n=5: a(n) = (763/18)*n^6 + (1949/3)*n^5 + (136493/36)*n^4 + (72691/6)*n^3 + (693923/36)*n^2 + (43319/3)*n + 4096
n=6: a(n) = 198*n^6 + (35807/12)*n^5 + (204911/12)*n^4 + (214827/4)*n^3 + (998209/12)*n^2 + (180451/3)*n + 16384
n=7: a(n) = (15887/18)*n^6 + (39464/3)*n^5 + (2674189/36)*n^4 + (462227/2)*n^3 + (12645859/36)*n^2 + (743119/3)*n + 65536
EXAMPLE
Some solutions for n=3 k=4
..2..2..0..0..0....1..2..3..2..2....2..2..1..0..0....3..2..1..1..1
..0..0..0..0..0....0..1..2..2..3....0..0..0..0..0....0..0..0..0..0
..1..1..1..1..1....0..1..2..2..3....1..1..1..1..3....0..0..1..1..2
..0..1..1..1..3....0..1..2..2..3....0..0..0..1..3....0..0..1..1..2
CROSSREFS
Row 1 is A001249(n+1)
Sequence in context: A017174 A202334 A250806 * A017270 A105089 A334707
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 28 2014
STATUS
approved