Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Nov 28 2014 08:49:59
%S 100,400,543,1225,2457,2670,3136,8037,13097,12311,7056,21436,44797,
%T 63631,54410,14400,49599,123016,223933,291165,233683,27225,103293,
%U 290646,626416,1043885,1280447,983950,48400,198297,614965,1499679,2955136
%N T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing min(x(i,j),x(i-1,j)) in the j direction
%C Table starts
%C ......100.......400.......1225.......3136........7056.......14400.......27225
%C ......543......2457.......8037......21436.......49599......103293......198297
%C .....2670.....13097......44797.....123016......290646......614965.....1195457
%C ....12311.....63631.....223933.....626416.....1499679.....3204951.....6279401
%C ....54410....291165....1043885....2955136.....7134786....15344785....30214465
%C ...233683...1280447....4648157...13263136....32201019....69543783...137379337
%C ...983950...5480917...20067117...57570016...140301126...303858745...601566177
%C ..4085631..23024631...84805533..244213216...596722599..1294875471..2567402601
%C .16796370..95448605..353060845.1019415136..2495502666..5422612945.10763029505
%C .68555723.391939087.1454214877.4206874336.10311967539.22429374423.44552408777
%H R. H. Hardin, <a href="/A250853/b250853.txt">Table of n, a(n) for n = 1..160</a>
%F Empirical T(n,k) = (((31/36)*k^6+(25/2)*k^5+(1229/18)*k^4+(620/3)*k^3+(10759/36)*k^2+(1181/6)*k+48)*4^n -((5/3)*k^6+(133/6)*k^5+(320/3)*k^4+(1717/6)*k^3+(944/3)*k^2+(344/3)*k)*3^n +(k^6+12*k^5+47*k^4+103*k^3+54*k^2-13*k)*2^n -((1/9)*k^6+(3/2)*k^5+(25/9)*k^4+(13/6)*k^3-(89/9)*k^2+(4/3)*k))/12
%F Empirical for column k:
%F k=1: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (832*4^n-846*3^n+204*2^n+2)/12
%F k=2: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (4838*4^n-6300*3^n+2214*2^n-80)/12
%F k=3: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (18104*4^n-26144*3^n+10680*2^n-644)/12
%F k=4: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (52650*4^n-80640*3^n+35820*2^n-2688)/12
%F k=5: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (129528*4^n-206190*3^n+96660*2^n-8190)/12
%F k=6: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (282492*4^n-462196*3^n+224994*2^n-20568)/12
%F k=7: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (562288*4^n-939120*3^n+470064*2^n-45220)/12
%F Empirical for row n:
%F n=1: a(n) = (1/36)*n^6 + (1/2)*n^5 + (133/36)*n^4 + (43/3)*n^3 + (277/9)*n^2 + (104/3)*n + 16
%F n=2: a(n) = (2/9)*n^6 + (47/12)*n^5 + (953/36)*n^4 + (1141/12)*n^3 + (6527/36)*n^2 + 172*n + 64
%F n=3: a(n) = (3/2)*n^6 + (74/3)*n^5 + (621/4)*n^4 + (3161/6)*n^3 + (3691/4)*n^2 + 783*n + 256
%F n=4: a(n) = (76/9)*n^6 + (1595/12)*n^5 + (28765/36)*n^4 + (31373/12)*n^3 + (155683/36)*n^2 + (10223/3)*n + 1024
%F n=5: a(n) = (763/18)*n^6 + (1949/3)*n^5 + (136493/36)*n^4 + (72691/6)*n^3 + (693923/36)*n^2 + (43319/3)*n + 4096
%F n=6: a(n) = 198*n^6 + (35807/12)*n^5 + (204911/12)*n^4 + (214827/4)*n^3 + (998209/12)*n^2 + (180451/3)*n + 16384
%F n=7: a(n) = (15887/18)*n^6 + (39464/3)*n^5 + (2674189/36)*n^4 + (462227/2)*n^3 + (12645859/36)*n^2 + (743119/3)*n + 65536
%e Some solutions for n=3 k=4
%e ..2..2..0..0..0....1..2..3..2..2....2..2..1..0..0....3..2..1..1..1
%e ..0..0..0..0..0....0..1..2..2..3....0..0..0..0..0....0..0..0..0..0
%e ..1..1..1..1..1....0..1..2..2..3....1..1..1..1..3....0..0..1..1..2
%e ..0..1..1..1..3....0..1..2..2..3....0..0..0..1..3....0..0..1..1..2
%Y Row 1 is A001249(n+1)
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Nov 28 2014