The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A202332 Number of (n+1) X 6 binary arrays with consecutive windows of two bits considered as a binary number nondecreasing in every row and column. 1
 64, 191, 478, 1052, 2102, 3896, 6800, 11299, 18020, 27757, 41498, 60454, 86090, 120158, 164732, 222245, 295528, 387851, 502966, 645152, 819262, 1030772, 1285832, 1591319, 1954892, 2385049, 2891186, 3483658, 4173842, 4974202, 5898356, 6961145 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Column 5 of A202335. LINKS R. H. Hardin, Table of n, a(n) for n = 1..210 FORMULA Empirical: a(n) = (1/360)*n^6 + (1/12)*n^5 + (17/18)*n^4 + (16/3)*n^3 + (5779/360)*n^2 + (295/12)*n + 17. Conjectures from Colin Barker, May 28 2018: (Start) G.f.: x*(64 - 257*x + 485*x^2 - 523*x^3 + 331*x^4 - 115*x^5 + 17*x^6) / (1 - x)^7. a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7. (End) EXAMPLE Some solutions for n=5: ..0..0..0..1..1..1....0..0..0..0..0..0....0..0..0..0..1..0....0..0..0..0..1..0 ..1..1..1..1..1..1....0..0..0..0..0..0....0..0..0..0..1..0....0..0..0..0..1..0 ..1..1..1..1..1..1....0..0..0..0..0..1....0..0..0..1..1..1....0..0..0..0..1..1 ..1..1..1..1..1..1....0..0..0..0..0..1....1..1..1..1..1..1....0..0..0..0..1..1 ..1..1..1..1..1..1....0..0..0..1..1..1....1..1..1..1..1..1....1..1..1..1..1..1 ..1..1..1..1..1..1....1..1..1..1..1..1....1..1..1..1..1..1....0..0..1..1..1..1 CROSSREFS Cf. A202335. Sequence in context: A317763 A318342 A318074 * A208636 A135270 A045052 Adjacent sequences: A202329 A202330 A202331 * A202333 A202334 A202335 KEYWORD nonn AUTHOR R. H. Hardin, Dec 17 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 4 09:13 EDT 2023. Contains 365873 sequences. (Running on oeis4.)