login
A202333
Number of (n+1) X 7 binary arrays with consecutive windows of two bits considered as a binary number nondecreasing in every row and column.
1
81, 270, 746, 1796, 3896, 7790, 14588, 25885, 43903, 71658, 113154, 173606, 259694, 379850, 544580, 766823, 1062349, 1450198, 1953162, 2598312, 3417572, 4448342, 5734172, 7325489, 9280379, 11665426, 14556610, 18040266, 22214106, 27188306
OFFSET
1,1
COMMENTS
Column 6 of A202335.
LINKS
FORMULA
Empirical: a(n) = (1/2520)*n^7 + (11/720)*n^6 + (167/720)*n^5 + (265/144)*n^4 + (5999/720)*n^3 + (974/45)*n^2 + (4191/140)*n + 19.
Conjectures from Colin Barker, May 28 2018: (Start)
G.f.: x*(81 - 378*x + 854*x^2 - 1148*x^3 + 966*x^4 - 502*x^5 + 148*x^6 - 19*x^7) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)
EXAMPLE
Some solutions for n=5:
..0..0..0..0..0..1..1....0..0..0..0..0..1..0....0..0..0..0..0..0..0
..0..0..0..0..1..1..1....0..0..0..0..1..1..1....0..0..0..0..0..0..0
..0..0..0..0..1..1..1....0..0..1..1..1..1..1....0..0..0..0..0..0..1
..0..0..0..0..1..1..1....0..0..1..1..1..1..1....0..0..0..0..0..0..1
..0..0..0..1..1..1..1....1..1..1..1..1..1..1....0..0..0..0..0..1..1
..0..0..0..0..1..1..1....0..1..1..1..1..1..1....0..0..0..1..1..1..1
CROSSREFS
Cf. A202335.
Sequence in context: A237234 A237227 A206094 * A207042 A206087 A236809
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 17 2011
STATUS
approved