login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206094
T(n,k) = number of (n+1) X (k+1) 0..2 arrays with every 2 X 3 or 3 X 2 subblock having exactly two counterclockwise and two clockwise edge increases.
9
81, 270, 270, 972, 780, 972, 3564, 2016, 2016, 3564, 13608, 5952, 4560, 5952, 13608, 52812, 17976, 13344, 13344, 17976, 52812, 205416, 54432, 33792, 48816, 33792, 54432, 205416, 803844, 165936, 86496, 131904, 131904, 86496, 165936, 803844
OFFSET
1,1
COMMENTS
Table starts
.....81....270....972....3564....13608.....52812.....205416......803844
....270....780...2016....5952....17976.....54432.....165936......504912
....972...2016...4560...13344....33792.....86496.....240192......608256
...3564...5952..13344...48816...131904....444480....1645920.....4484736
..13608..17976..33792..131904...516912...2156544....8613504....34039392
..52812..54432..86496..444480..2156544..10584000...56633472...279244800
.205416.165936.240192.1645920..8613504..56633472..408445632..2199502080
.803844.504912.608256.4484736.34039392.279244800.2199502080.17222950080
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 4*a(n-1) -a(n-2) +12*a(n-3) -36*a(n-4)
k=2: a(n) = a(n-1) +6*a(n-2) +4*a(n-3) -10*a(n-4) for n>6
k=3: a(n) = 18*a(n-3) for n>6
k=4: a(n) = 34*a(n-3) for n>7
k=5: a(n) = 66*a(n-3) for n>8
k=6: a(n) = 130*a(n-3) for n>9
k=7: a(n) = 258*a(n-3) for n>10
apparently a(n) = (2+2^(k+1))*a(n-3) for k>2 and n>k+3
EXAMPLE
Some solutions for n=4, k=3:
..2..0..0..2....0..2..0..2....2..1..0..2....2..2..0..2....0..0..1..2
..1..2..0..0....1..0..0..2....1..0..0..2....0..2..2..0....1..0..0..1
..1..1..2..0....0..0..1..0....0..0..1..0....1..0..2..2....0..1..0..0
..2..1..1..2....0..2..0..0....0..2..0..0....1..1..0..2....0..0..2..2
..0..2..1..1....1..0..0..1....2..0..0..1....2..1..1..0....1..0..2..1
CROSSREFS
Sequence in context: A236739 A237234 A237227 * A202333 A207042 A206087
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Feb 03 2012
STATUS
approved