login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202303
Drop the last digit of A023110(n).
6
0, 0, 0, 0, 1, 4, 16, 25, 36, 144, 324, 1849, 6400, 23716, 36481, 51984, 207936, 467856, 2666689, 9229444, 34199104, 52606009, 74960964, 299843856, 674648676, 3845364121, 13308852496, 49315084900, 75857828929, 108093658176, 432374632704, 972842923584, 5545012396225, 19191356070436, 71112318227344, 109386936710041, 155870980128900, 623483920515600, 1402838821160100
OFFSET
1,6
COMMENTS
By definition, all the terms are squares.
REFERENCES
R. K. Guy, Neg and Reg, preprint, Jan 2012.
FORMULA
Conjecture: a(n) = 1443*a(n-7)-1443*a(n-14)+a(n-21). - Colin Barker, Sep 20 2014
Empirical g.f.: -x^5*(x +1)*(x^16 +3*x^15 +13*x^14 +12*x^13 +312*x^12 -168*x^11 +204*x^10 +202*x^9 +426*x^8 +202*x^7 +204*x^6 +120*x^5 +24*x^4 +12*x^3 +13*x^2 +3*x +1) / ((x -1)*(x^6 +x^5 +x^4 +x^3 +x^2 +x +1)*(x^14 -1442*x^7 +1)). - Colin Barker, Sep 20 2014
CROSSREFS
Cf. A023110. The square roots are in A031150.
Sequence in context: A228004 A269157 A343726 * A350835 A214937 A235001
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Jan 12 2012
EXTENSIONS
Fourth leading 0 inserted by Georg Fischer, Feb 21 2022
STATUS
approved