login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202141
a(n) = 13*n^2 - 16*n + 5.
4
5, 2, 25, 74, 149, 250, 377, 530, 709, 914, 1145, 1402, 1685, 1994, 2329, 2690, 3077, 3490, 3929, 4394, 4885, 5402, 5945, 6514, 7109, 7730, 8377, 9050, 9749, 10474, 11225, 12002, 12805, 13634, 14489, 15370, 16277, 17210, 18169, 19154, 20165, 21202, 22265
OFFSET
0,1
COMMENTS
Numbers of the form (r*n - r + 1)^2 + ((r+1)*n - r)^2; in this case, r=2.
Inverse binomial transform of this sequence: 5,-3, 26, 0, 0 (0 continued).
FORMULA
G.f.: (5 - 13*x + 34*x^2)/(1-x)^3.
a(n) = A161587(n-1) + 1 with A161587(-1) = 4.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. - Wesley Ivan Hurt, Oct 09 2017
E.g.f.: (5 - 3*x + 13*x^2)*exp(x). - Elmo R. Oliveira, Oct 20 2024
MAPLE
A202141:=n->13*n^2-16*n+5: seq(A202141(n), n=0..100); # Wesley Ivan Hurt, Oct 09 2017
MATHEMATICA
Table[13 n^2 - 16 n + 5, {n, 0, 42}]
PROG
(PARI) for(n=0, 42, print1(13*n^2-16*n+5", "));
(Magma) [13*n^2-16*n+5: n in [0..42]];
CROSSREFS
Cf. A190816 (r=1), A154355 (r=3), A161587.
Sequence in context: A038244 A135138 A128712 * A100080 A117734 A007572
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Dec 12 2011
STATUS
approved