login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 13*n^2 - 16*n + 5.
4

%I #25 Oct 21 2024 04:39:01

%S 5,2,25,74,149,250,377,530,709,914,1145,1402,1685,1994,2329,2690,3077,

%T 3490,3929,4394,4885,5402,5945,6514,7109,7730,8377,9050,9749,10474,

%U 11225,12002,12805,13634,14489,15370,16277,17210,18169,19154,20165,21202,22265

%N a(n) = 13*n^2 - 16*n + 5.

%C Numbers of the form (r*n - r + 1)^2 + ((r+1)*n - r)^2; in this case, r=2.

%C Inverse binomial transform of this sequence: 5,-3, 26, 0, 0 (0 continued).

%H Bruno Berselli, <a href="/A202141/b202141.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F G.f.: (5 - 13*x + 34*x^2)/(1-x)^3.

%F a(n) = A161587(n-1) + 1 with A161587(-1) = 4.

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. - _Wesley Ivan Hurt_, Oct 09 2017

%F E.g.f.: (5 - 3*x + 13*x^2)*exp(x). - _Elmo R. Oliveira_, Oct 20 2024

%p A202141:=n->13*n^2-16*n+5: seq(A202141(n), n=0..100); # _Wesley Ivan Hurt_, Oct 09 2017

%t Table[13 n^2 - 16 n + 5, {n, 0, 42}]

%o (PARI) for(n=0, 42, print1(13*n^2-16*n+5", "));

%o (Magma) [13*n^2-16*n+5: n in [0..42]];

%Y Cf. A190816 (r=1), A154355 (r=3), A161587.

%K nonn,easy

%O 0,1

%A _Bruno Berselli_, Dec 12 2011