login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135138
a(n) = 5*a(n-2) + 2*a(n-3).
4
0, 0, 1, 0, 5, 2, 25, 20, 129, 150, 685, 1008, 3725, 6410, 20641, 39500, 116025, 238782, 659125, 1425960, 3773189, 8448050, 21717865, 49786628, 125485425, 292368870, 727000381, 1712815200, 4219739645, 10018076762, 24524328625, 58529863100
OFFSET
0,5
COMMENTS
a(n+2), n>=0, is the (5,2)-Padovan sequence p(5,2;n)with o.g.f. 1/(1-5*x^2-2*x^3). See A000931(n+3) ((1,1)-Padovan), and the W. Lang link given there, also for a combinatorial interpretation. - Wolfdieter Lang, Jun 28 2010
FORMULA
From R. J. Mathar, Feb 15 2008: (Start)
O.g.f.: -x^2 / ( (2*x+1)*(x^2+2*x-1) ).
a(n) = [(-2)^n + A078343(n)]/7. (End)
MATHEMATICA
a = {0, 0, 1}; Do[AppendTo[a, 5*a[[ -2]] + 2*a[[ -3]]], {40}]; a (* Stefan Steinerberger, Feb 15 2008 *)
LinearRecurrence[{0, 5, 2}, {0, 0, 1}, 100] (* G. C. Greubel, Sep 28 2016 *)
CROSSREFS
Cf. A135139.
Sequence in context: A164309 A104064 A038244 * A128712 A202141 A100080
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Feb 13 2008
EXTENSIONS
More terms from R. J. Mathar and Stefan Steinerberger, Feb 15 2008
STATUS
approved