login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104064
Triangle read by rows: T(n,k)=(-1)^k*(2n/(2n-k))5^(n-k)*binomial(2n-k,k) (0<=k<=n, n>=1).
0
5, -2, 25, -20, 2, 125, -150, 45, -2, 625, -1000, 500, -80, 2, 3125, -6250, 4375, -1250, 125, -2, 15625, -37500, 33750, -14000, 2625, -180, 2, 78125, -218750, 240625, -131250, 36750, -4900, 245, -2, 390625, -1250000, 1625000, -1100000, 412500, -84000, 8400, -320, 2
OFFSET
1,1
COMMENTS
Row n contains n+1 terms. Row sums yield the even-subscripted Lucas numbers (A005248).
LINKS
P. Filipponi, Waring's formula, the binomial formula and generalized Fibonacci matrices, The Fibonacci Quarterly, 30, 1992, 225-231.
P. Filipponi, Combinatorial expressions for Lucas numbers, The Fibonacci Quarterly, 36, 1998, 63-65.
EXAMPLE
Triangle starts:
5, -2;
25, -20, 2;
125, -150, 45, -2;
625, -1000, 500, -80, 2; - Michel Marcus, Apr 09 2013
MAPLE
T:=proc(n, k) if k<=n then (-1)^k*2*n*5^(n-k)*binomial(2*n-k, k)/(2*n-k) else 0 fi end: for n from 1 to 9 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form
CROSSREFS
Cf. A005248.
Sequence in context: A090882 A191702 A164309 * A038244 A135138 A128712
KEYWORD
sign,tabf
AUTHOR
Emeric Deutsch, Mar 02 2005
STATUS
approved