login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104063
Triangle read by rows: T(n,k) = (-1)^k*3^(n-1-2k)*binomial(n-k,k)*(4n-5k)/(n-k) (0 <= k <= floor(n/2), n >= 1).
0
1, 4, 12, -1, 36, -7, 108, -33, 1, 324, -135, 10, 972, -513, 63, -1, 2916, -1863, 324, -13, 8748, -6561, 1485, -102, 1, 26244, -22599, 6318, -630, 16, 78732, -76545, 25515, -3375, 150, -1, 236196, -255879, 99144, -16443, 1080, -19, 708588, -846369, 373977, -74844, 6615, -207, 1
OFFSET
0,2
LINKS
P. Filipponi, Combinatorial expressions for Lucas numbers, The Fibonacci Quarterly, 36, 1998, 63-65.
A. Panholzer and H. Prodinger, Two proofs of Filipponi's formula for odd-subscripted Lucas numbers, The Fibonacci Quarterly, 38, 2000, 165-166.
MAPLE
T:=proc(n, k) if k=0 and n=0 then 1 elif k<=floor(n/2) then (-1)^k*binomial(n-k, k)*3^(n-1-2*k)*(4*n-5*k)/(n-k) else 0 fi end: for n from 0 to 12 do seq(T(n, k), k=0..floor(n/2)) od;
CROSSREFS
Row sums yield the odd-indexed Lucas numbers (A002878).
Sequence in context: A144207 A016487 A370707 * A374282 A260430 A243347
KEYWORD
sign,tabf
AUTHOR
Emeric Deutsch, Mar 02 2005
STATUS
approved