The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A104063 Triangle read by rows: T(n,k) = (-1)^k*3^(n-1-2k)*binomial(n-k,k)*(4n-5k)/(n-k) (0 <= k <= floor(n/2), n >= 1). 0
 1, 4, 12, -1, 36, -7, 108, -33, 1, 324, -135, 10, 972, -513, 63, -1, 2916, -1863, 324, -13, 8748, -6561, 1485, -102, 1, 26244, -22599, 6318, -630, 16, 78732, -76545, 25515, -3375, 150, -1, 236196, -255879, 99144, -16443, 1080, -19, 708588, -846369, 373977, -74844, 6615, -207, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS P. Filipponi, Combinatorial expressions for Lucas numbers, The Fibonacci Quarterly, 36, 1998, 63-65. A. Panholzer and H. Prodinger, Two proofs of Filipponi's formula for odd-subscripted Lucas numbers, The Fibonacci Quarterly, 38, 2000, 165-166. MAPLE T:=proc(n, k) if k=0 and n=0 then 1 elif k<=floor(n/2) then (-1)^k*binomial(n-k, k)*3^(n-1-2*k)*(4*n-5*k)/(n-k) else 0 fi end: for n from 0 to 12 do seq(T(n, k), k=0..floor(n/2)) od; CROSSREFS Row sums yield the odd-indexed Lucas numbers (A002878). Sequence in context: A073902 A144207 A016487 * A260430 A243347 A317555 Adjacent sequences:  A104060 A104061 A104062 * A104064 A104065 A104066 KEYWORD sign,tabf AUTHOR Emeric Deutsch, Mar 02 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 04:46 EST 2022. Contains 350378 sequences. (Running on oeis4.)