login
A201901
Decimal expansion of the number x satisfying x^2+3x+4=e^x.
2
3, 1, 5, 2, 5, 9, 0, 7, 3, 6, 7, 5, 7, 1, 5, 8, 2, 7, 4, 9, 9, 6, 9, 8, 9, 0, 0, 4, 7, 6, 7, 1, 3, 9, 7, 8, 5, 8, 1, 3, 8, 0, 9, 4, 4, 8, 2, 5, 9, 8, 9, 3, 1, 5, 4, 6, 3, 5, 0, 1, 5, 8, 0, 5, 9, 3, 5, 0, 8, 5, 3, 3, 6, 7, 0, 4, 6, 0, 8, 0, 6, 7, 6, 4, 9, 5, 9, 5, 4, 4, 3, 7, 3, 6, 5, 7, 9, 3, 3
OFFSET
1,1
COMMENTS
See A201741 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
x=3.1525907367571582749969890047671397858138094...
MATHEMATICA
a = 1; b = 3; c = 4;
f[x_] := a*x^2 + b*x + c; g[x_] := E^x
Plot[{f[x], g[x]}, {x, -3, 3.3}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.2}, WorkingPrecision -> 110]
RealDigits[r] (* A201901 *)
CROSSREFS
Cf. A201741.
Sequence in context: A092368 A225080 A276505 * A331381 A174239 A066249
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 06 2011
STATUS
approved