login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A201898 Decimal expansion of the x nearest 0 that satisfies x^2+3x+1=e^x. 4
6, 0, 8, 9, 8, 9, 1, 0, 3, 0, 1, 0, 1, 6, 5, 4, 9, 4, 8, 3, 5, 0, 4, 3, 7, 0, 1, 9, 2, 6, 0, 1, 1, 8, 7, 3, 3, 9, 7, 1, 1, 5, 3, 1, 7, 1, 1, 4, 2, 7, 7, 5, 0, 7, 0, 9, 4, 1, 6, 7, 7, 0, 2, 8, 8, 2, 2, 0, 7, 5, 9, 0, 4, 7, 1, 1, 3, 8, 2, 0, 5, 4, 3, 8, 1, 1, 3, 1, 0, 3, 9, 7, 3, 5, 4, 5, 1, 4, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
See A201741 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least: -2.1093569955710161272316992470592578841155...
nearest to 0: -0.608989103010165494835043701926011...
greatest: 2.99223487205393686509331145278388262181...
MATHEMATICA
a = 1; b = 3; c = 2;
f[x_] := a*x^2 + b*x + c; g[x_] := E^x
Plot[{f[x], g[x]}, {x, -3, 3.1}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -2.2, -2.1}, WorkingPrecision -> 110]
RealDigits[r] (* A201897, least *)
r = x /. FindRoot[f[x] == g[x], {x, -.7, -.6}, WorkingPrecision -> 110]
RealDigits[r] (* A201898, nearest 0 *)
r = x /. FindRoot[f[x] == g[x], {x, 2.9, 3.0}, WorkingPrecision -> 110]
RealDigits[r] (* A201899 greatest *)
CROSSREFS
Cf. A201741.
Sequence in context: A085609 A153609 A156015 * A193336 A240251 A114530
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 06 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 25 05:27 EDT 2024. Contains 373697 sequences. (Running on oeis4.)