login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A201904 Decimal expansion of the greatest x satisfying x^2+4x+1=e^x. 3
3, 1, 6, 4, 1, 3, 7, 1, 1, 1, 6, 3, 7, 9, 3, 8, 3, 2, 5, 2, 8, 4, 4, 6, 6, 9, 6, 6, 7, 3, 8, 9, 2, 1, 5, 9, 6, 5, 6, 1, 5, 5, 3, 9, 9, 2, 8, 5, 9, 5, 4, 4, 6, 8, 2, 9, 4, 2, 9, 6, 9, 5, 3, 8, 4, 1, 0, 1, 9, 5, 2, 1, 7, 6, 4, 7, 0, 9, 8, 9, 5, 4, 3, 6, 1, 5, 6, 7, 8, 3, 8, 2, 0, 9, 3, 2, 1, 8, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

See A201741 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

least:  -3.73890200966899672518020580953927823014766...

greatest:  3.164137111637938325284466966738921596561...

MATHEMATICA

a = 1; b = 4; c = 1;

f[x_] := a*x^2 + b*x + c; g[x_] := E^x

Plot[{f[x], g[x]}, {x, -4, 3.3}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -3.8, -3.7}, WorkingPrecision -> 110]

RealDigits[r]     (* A201903 *)

r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.2}, WorkingPrecision -> 110]

RealDigits[r]     (* A201904 *)

CROSSREFS

Cf. A201741.

Sequence in context: A126191 A070883 A120029 * A133110 A286158 A185915

Adjacent sequences:  A201901 A201902 A201903 * A201905 A201906 A201907

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Dec 06 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 30 03:34 EDT 2022. Contains 354913 sequences. (Running on oeis4.)