login
A201762
Decimal expansion of the greatest x satisfying -x^2+7=e^x.
3
1, 5, 3, 5, 3, 1, 7, 6, 0, 2, 3, 4, 3, 7, 6, 5, 8, 6, 2, 0, 2, 6, 9, 2, 3, 7, 2, 4, 3, 9, 7, 2, 0, 6, 2, 0, 8, 6, 1, 2, 5, 4, 7, 9, 0, 6, 2, 8, 6, 4, 0, 2, 5, 4, 1, 5, 9, 2, 1, 2, 9, 5, 3, 6, 3, 0, 4, 2, 8, 4, 8, 3, 4, 9, 4, 2, 2, 2, 5, 2, 8, 8, 1, 2, 4, 3, 4, 1, 3, 6, 5, 4, 7, 9, 0, 2, 9, 3, 0
OFFSET
1,2
COMMENTS
See A201741 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least: -2.6321235606142229538753076713383129343383...
greatest: 1.53531760234376586202692372439720620861...
MATHEMATICA
a = -1; b = 0; c = 7;
f[x_] := a*x^2 + b*x + c; g[x_] := E^x
Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -2.7, -2.6}, WorkingPrecision -> 110]
RealDigits[r] (* A201761 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]
RealDigits[r] (* A201762 *)
CROSSREFS
Cf. A201741.
Sequence in context: A333236 A270915 A319461 * A153386 A112920 A109364
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 05 2011
STATUS
approved