|
|
A112920
|
|
Number of nonisomorphic connected bipartite H-graphs H(n:i,j;k,m) with girth 6 on 6n vertices (or nodes) for 1<=i,j,k,m<n/2.
|
|
4
|
|
|
0, 0, 0, 1, 5, 3, 5, 3, 13, 8, 19, 27, 9, 19, 33, 74, 41, 19, 61, 75, 61, 137, 51, 108, 95, 111, 99, 217
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
3,5
|
|
COMMENTS
|
An H-graph H(n:i,j;k,m) has 6n vertices arranged in six segments of n vertices. Let the vertices be v_{x,y} for x=0,1,2,3,4,5 and y in the integers modulo n. The edges are v_{0,y}v_{1,y}, v_{0,y}v_{2,y}, v_{0,y}v_{3,y}, v_{1,y}v_{4,y}, v_{1,y}v_{5,y} (inner edges) and v_{2,y}v_{2,y+i}, v_{3,y}v_{3,y+j}, v_{4,y}v_{3,y+k}, v_{5,y}v_{5,y+m} (outer edges) where y=0,1,...,n-1 and subscript addition is performed modulo n.
|
|
REFERENCES
|
I. Z. Bouwer, W. W. Chernoff, B. Monson, and Z. Starr (Editors), "Foster's Census", Charles Babbage Research Centre, Winnipeg, 1988.
|
|
LINKS
|
|
|
EXAMPLE
|
The smallest H-graph with girth 6 is H(6:1,1;1,1).
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Marko Boben (Marko.Boben(AT)fmf.uni-lj.si), Tomaz Pisanski and Arjana Zitnik (Arjana.Zitnik(AT)fmf.uni-lj.si), Oct 06 2005
|
|
STATUS
|
approved
|
|
|
|