login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A201760
Decimal expansion of the greatest x satisfying -x^2+6 = e^x.
3
1, 3, 9, 7, 7, 8, 0, 5, 3, 5, 4, 2, 4, 1, 7, 6, 8, 7, 4, 1, 6, 4, 6, 8, 5, 4, 7, 4, 6, 0, 6, 2, 3, 3, 3, 6, 8, 9, 4, 8, 0, 7, 2, 4, 1, 0, 7, 6, 4, 9, 2, 3, 5, 6, 6, 8, 8, 0, 1, 4, 3, 3, 1, 1, 4, 7, 4, 5, 1, 6, 8, 9, 1, 1, 2, 4, 0, 3, 2, 1, 6, 3, 4, 2, 4, 9, 7, 5, 9, 7, 5, 1, 8, 6, 4, 9, 5, 7, 2
OFFSET
1,2
COMMENTS
See A201741 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least: -2.431479659723036039736539014083415082...
greatest: 1.3977805354241768741646854746062333...
MATHEMATICA
a = -1; b = 0; c = 6;
f[x_] := a*x^2 + b*x + c; g[x_] := E^x
Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -2.5, -2.4}, WorkingPrecision -> 110]
RealDigits[r] (* A201759 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.3, 1.4}, WorkingPrecision -> 110]
RealDigits[r] (* A201760 *)
CROSSREFS
Cf. A201741.
Sequence in context: A247003 A201943 A358614 * A046261 A074806 A010634
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 05 2011
STATUS
approved