The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A200583 Table read by rows, n >= 1, 1 <= k <= card(divisors(n)), T(n,k) meanders of length n and central angle of 360/d degrees, d the k-th divisor of n. 1
 1, 2, 1, 4, 1, 8, 3, 1, 16, 1, 32, 10, 4, 1, 64, 1, 128, 35, 5, 1, 256, 22, 1, 512, 126, 6, 1, 1024, 1, 2048, 462, 134, 46, 7, 1, 4096, 1, 8192, 1716, 8, 1, 16384, 866, 94, 1, 32768, 6435, 485, 9, 1, 65536, 1, 131072, 24310, 5812, 190, 10, 1, 262144, 1, 524288 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A meander is a closed curve drawn by arcs of equal length and central angle of equal magnitude, starting with a positively oriented arc. LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..482 Peter Luschny, Meander. FORMULA T(n,k) = A198060(d-1,n/d-1) where d is the k-th divisor of n (the divisors in natural order). EXAMPLE [ 1] 1 [ 2] 2, 1 [ 3] 4, 1 [ 4] 8, 3, 1 [ 5] 16, 1 [ 6] 32, 10, 4, 1 [ 7] 64, 1 [ 8] 128, 35, 5, 1 [ 9] 256, 22, 1 [10] 512, 126, 6, 1 [11] 1024, 1 [12] 2048, 462, 134, 46, 7, 1 MAPLE A200583_row := proc(n) local i; seq(A198060(i-1, n/i-1), i=numtheory[divisors](n)) end: seq(print(A200583_row(i)), i=1..12); MATHEMATICA A198060[m_, n_] := Sum[Sum[Sum[(-1)^(j+i)*Binomial[i, j]*Binomial[n, k]^(m+1)*(n+1)^j*(k+1)^(m-j)/(k+1)^m, {i, 0, m}], {j, 0, m}], {k, 0, n}]; row[n_] := Table[A198060[d-1, n/d-1], {d, Divisors[n]}]; Table[row[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Feb 25 2014, after Maple *) CROSSREFS Cf. A198060, A199932, A200062. Sequence in context: A307683 A248058 A072345 * A115120 A147373 A147441 Adjacent sequences: A200580 A200581 A200582 * A200584 A200585 A200586 KEYWORD nonn,tabf AUTHOR Peter Luschny, Nov 20 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 1 03:44 EDT 2023. Contains 361673 sequences. (Running on oeis4.)