login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A200096
Decimal expansion of greatest x satisfying x^2 - 3*cos(x) = 3*sin(x).
3
1, 6, 5, 4, 6, 9, 9, 7, 8, 2, 2, 9, 3, 9, 0, 1, 0, 7, 1, 1, 3, 1, 6, 8, 6, 6, 8, 1, 8, 3, 0, 8, 0, 0, 6, 3, 5, 4, 6, 5, 9, 6, 8, 5, 5, 6, 7, 0, 3, 5, 0, 6, 3, 0, 7, 5, 3, 8, 7, 7, 2, 4, 0, 1, 0, 7, 0, 3, 8, 7, 2, 6, 4, 8, 7, 7, 0, 4, 0, 0, 3, 7, 8, 7, 1, 8, 7, 6, 8, 5, 2, 5, 7, 6, 2, 3, 7, 1, 4
OFFSET
1,2
COMMENTS
See A199949 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least x: -0.677119411697943130184179520098917021...
greatest x: 1.6546997822939010711316866818308006354...
MATHEMATICA
a = 1; b = -3; c = 3;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -.88, -.67}, WorkingPrecision -> 110]
RealDigits[r] (* A200095 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.65, 1.66}, WorkingPrecision -> 110]
RealDigits[r] (* A200096 *)
PROG
(PARI) a=1; b=-3; c=3; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 24 2018
CROSSREFS
Cf. A199949.
Sequence in context: A302712 A125089 A171537 * A220086 A094773 A205651
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 13 2011
STATUS
approved