login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A200094
Decimal expansion of greatest x satisfying x^2 - 3*cos(x) = 2*sin(x).
3
1, 4, 9, 2, 6, 6, 5, 9, 2, 3, 5, 2, 5, 1, 3, 2, 2, 0, 6, 9, 6, 9, 2, 4, 3, 0, 5, 9, 8, 3, 4, 9, 3, 6, 8, 6, 1, 2, 4, 0, 4, 8, 8, 9, 5, 6, 1, 6, 3, 5, 6, 4, 3, 2, 6, 8, 3, 4, 4, 8, 4, 7, 9, 6, 0, 6, 9, 1, 2, 4, 2, 5, 9, 1, 7, 2, 9, 7, 0, 3, 5, 3, 3, 6, 8, 4, 1, 3, 1, 4, 1, 0, 3, 0, 8, 7, 9, 1, 2
OFFSET
1,2
COMMENTS
See A199949 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least x: -0.8029921542978842507203354534748712742...
greatest x: 1.492665923525132206969243059834936861...
MATHEMATICA
a = 1; b = -3; c = 2;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -.81, -.80}, WorkingPrecision -> 110]
RealDigits[r] (* A200093 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.49, 1.50}, WorkingPrecision -> 110]
RealDigits[r] (* A200094 *)
PROG
(PARI) a=1; b=-3; c=2; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 24 2018
CROSSREFS
Cf. A199949.
Sequence in context: A021071 A197146 A021207 * A277526 A196505 A203816
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 13 2011
STATUS
approved