login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200099 Decimal expansion of least x satisfying x^2 - 4*cos(x) = sin(x), negated. 3
1, 0, 5, 3, 3, 5, 2, 9, 8, 3, 6, 0, 0, 1, 5, 3, 7, 3, 3, 2, 8, 1, 1, 1, 0, 1, 5, 7, 9, 9, 9, 4, 6, 8, 4, 6, 4, 9, 7, 0, 2, 8, 5, 2, 7, 9, 2, 2, 5, 9, 2, 3, 5, 3, 4, 2, 2, 3, 2, 3, 5, 1, 9, 8, 5, 0, 7, 9, 9, 4, 3, 8, 1, 7, 4, 0, 4, 9, 1, 8, 0, 3, 9, 2, 4, 8, 9, 8, 6, 2, 2, 7, 8, 6, 5, 8, 5, 5, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

See A199949 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

EXAMPLE

least x:  -1.053352983600153733281110157999...

greatest x: 1.35457555821585784490890770164646...

MATHEMATICA

a = 1; b = -4; c = 1;

f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -1.06, -1.05}, WorkingPrecision -> 110]

RealDigits[r]  (* A200099 *)

r = x /. FindRoot[f[x] == g[x], {x, 1.35, 1.36}, WorkingPrecision -> 110]

RealDigits[r]  (* A200100 *)

PROG

(PARI) a=1; b=-4; c=1; solve(x=-2, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 24 2018

CROSSREFS

Cf. A199949.

Sequence in context: A090489 A090484 A177232 * A182129 A010038 A232109

Adjacent sequences:  A200096 A200097 A200098 * A200100 A200101 A200102

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 13 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 03:31 EDT 2021. Contains 347550 sequences. (Running on oeis4.)