

A199811


Sorted orders of automorphism groups of distinct solutions in the mix of 2 or 3 regular convex 4polytopes.


4



23040, 23040, 69120, 73728, 221184, 221184, 864000, 864000, 2764800, 2764800, 2764800, 2764800, 4423680, 8294400, 8294400, 13271040, 13271040, 42467328, 103680000, 165888000, 165888000, 165888000, 165888000, 497664000, 497664000, 530841600, 530841600, 1592524800, 1592524800, 1592524800, 1592524800, 6220800000, 19906560000, 19906560000, 59719680000
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Sorted 5th column of Table 2, p.11, of Cunningham.


LINKS

Table of n, a(n) for n=1..35.
Gabe Cunningham, Mixing Convex Polytopes, arXiv:1111.1312v1 [math.CO], Nov 5, 2011


EXAMPLE

a(1) = 23040 because the mix of the pentatope {3,3,3} and the 16cell hyperoctahedron {3,3,4} has 40 vertices, 480 edges, 1920 faces, 960 polyhedral facets, and an automorphism group of order 23040, and is itself polytopal (not every mix of polytope and polytope is a polytope).


CROSSREFS

Cf. A063924, A199545, A199546, A199549, A199807A199811.
Sequence in context: A235778 A235558 A104077 * A230791 A087425 A075784
Adjacent sequences: A199808 A199809 A199810 * A199812 A199813 A199814


KEYWORD

nonn,fini,full


AUTHOR

Jonathan Vos Post, Nov 10 2011


STATUS

approved



