login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087425
a(n) = S(5*n,5)/S(n,5) where S(n,m) = Sum_{k=0..n} binomial(n,k)*Fibonacci(m*k).
2
23105, 459119455, 9758296035305, 208416652653910655, 4452963734477926435505, 95143212432467064852443605, 2032859482921447476046969568705, 43434715031065603778576465510557055
OFFSET
1,1
FORMULA
a(n) = 121^n+{(21367+9555*sqrt(5))/2}^n+{(21367-9555*sqrt(5))/2}^n+{(1617+715*sqrt(5))/2}^n+{(1617-715*sqrt(5))/2}^n.
a(n) = (x_1)^n+(x_2)^n+(x_3)^n+(x_4)^n+(x_5)^n where (x_i) (1<=i<=5) are the roots of X^5-23105*X^4+37360785*X^3-4520654985*X^2+40931916905*X-25937424601.
MAPLE
S:=proc(n, m) add(binomial(n, k)*combinat:-fibonacci(m*k), k=0..n) end: m:=5: seq(S(m*n, m)/S(n, m), n=1..16); # Georg Fischer, Jul 07 2021
CROSSREFS
Cf. A020876.
Cf. A087423 (m=3), A087424 (m=4).
Sequence in context: A104077 A199811 A230791 * A031648 A075784 A126301
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Oct 22 2003
STATUS
approved